@article{M2AN_1992__26_7_793_0, author = {Bacry, E. and Mallat, S. and Papanicolaou, G.}, title = {A wavelet based space-time adaptive numerical method for partial differential equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {793--834}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {7}, year = {1992}, mrnumber = {1199314}, zbl = {0768.65062}, language = {en}, url = {http://www.numdam.org/item/M2AN_1992__26_7_793_0/} }
TY - JOUR AU - Bacry, E. AU - Mallat, S. AU - Papanicolaou, G. TI - A wavelet based space-time adaptive numerical method for partial differential equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1992 SP - 793 EP - 834 VL - 26 IS - 7 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1992__26_7_793_0/ LA - en ID - M2AN_1992__26_7_793_0 ER -
%0 Journal Article %A Bacry, E. %A Mallat, S. %A Papanicolaou, G. %T A wavelet based space-time adaptive numerical method for partial differential equations %J ESAIM: Modélisation mathématique et analyse numérique %D 1992 %P 793-834 %V 26 %N 7 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1992__26_7_793_0/ %G en %F M2AN_1992__26_7_793_0
Bacry, E.; Mallat, S.; Papanicolaou, G. A wavelet based space-time adaptive numerical method for partial differential equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 7, pp. 793-834. http://www.numdam.org/item/M2AN_1992__26_7_793_0/
[1] A multilevel iterative method for nonlinear elliptic equations, Elliptic Problem Solvers, M. Schultz, Ed., p. 1, Academic Press, New York, 1981. | Zbl
,[2] A block spin construction of ondelettes, Comm. Math. Phys., 110, p. 601, 1987. | MR
,[3] Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys., 82 pp. 64-84, 1989. | Zbl
and ,[4] Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, J. Comp. Phys., 53, No. 3, pp. 484-512, 1984. | MR | Zbl
and ,[5] On the representation of operators in bases of compactly supported wavelets, Proceedings of the École sur des Problèmes non Linéaires Appliqués, INRIA, Paris, June 1991. | MR | Zbl
,[6] Fast wavelet transform and numerical algorithms, Yale University Tech. Report YALE/DCS/RR-696, August 1989.
, and , , Math. Comp., 31, p. 333, 1977, New York, 1981. |[8] Orthonormal bases of compactly supported wavelets, Comm. in Pure Apll. Math., 41, pp. 909-996, November 1988. | MR | Zbl
,[9] Local structure of the self focusing singularity of the nonlinear Schroedinger equation, Physica D, 32, pp. 210-226, 1988. | MR | Zbl
, , and ,[10] Ondelettes à localisation exponentielles, J. Math. Pures Appl., 1988. | MR | Zbl
,[11] Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation, NASA Report, ICASE Report No. 90-83, Dec. 1990.
and ,[12] Multiresolution approximation and wavelet orthonormal bases of L2, Trans. Amer. Math. Soc. 315, pp. 69-87, Sept. 1989. | MR | Zbl
,[13] A theory for multiresolution signal decomposition : the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11, No. 7, pp. 674-693, July 1989. | Zbl
,[14] Ondelettes et opérateurs, Hermann, Paris 1990. | MR | Zbl
,[15] Ondelettes orthogonales sur un interval, preprint CEREMADE, Université Paris Dauphine, 1991. | MR
,[16] A modified Franklin system and higher-order Systems of Rn as unconditional bases for Hardy spaces, Conference in Harmonie Analysis in Honor of A. Zygmund, 2, pp 475-493, eds. W. Beckner et al., Wadsworth Math. Series. | Zbl
,[17] Galerkin-wavelets Methods for Two-point Boundary Value Problems, preprint, May 1991. | Zbl
and ,[18] On the multi-level splittmg of finite element spaces, Numer. Math., 49, pp. 379-412, 1986. | Zbl
,