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SPECTRAL STUDY OF A COUPLED
COMPACT-NONCOMPACT PROBLEM (*)

by A. BENKADDOUR (*) and J. SANCHEZ-HUBERT (2)

Commumcated by P GEYMONAT

Abstract — We consider the coupled problem of acoustic vibration of air in a porous medium
Op, made of infinitely close thin sheets, parallel to the plane (xx, x3), in contact withfree air in
some région flf We assume that there is no interaction between the sheets unless by the région
as

The case of a porous medium made ofthin channels parallel to the xx-axis was consider ed in [1,
2,3] In this paper, we consider a somewhat more complicated problem because completely
explicit solutions are not avaüable in gênerai

Let us dénote by A the operator associated with the coupled eigenvalue problem
( - Au = ü>2u) andbyAp(x2) the operator associated in the sheetx2 = Const in 12p In order to
study the spectrum o f A we consider two cases according to the values of co2. In the f ir st case
(when (o2 is not an eigenvalue of the problem in Op), the problem reduces to an imphcit
eigenvalue problem in Of , in the second case (when CD1 is an eigenvalue of A p(a2) for some value
°2 °f X2)> W€ snow thaï co2 belongs to the essential spectrum of A

Résumé. —Nous étudions la structure du spectre d'un opérateur associé à un problème couplé
de vibrations acoustiques Plus précisément, nous considérons un milieu poreux Opi constitué
par un grand nombre de lamelles planes uniformément distribuées, en contact avec une cavité
remplie d'air, que nous désignerons par Qf Nous supposons qu'il n'y a pas d'interaction entre
les lamelles, sauf par la région 12 ̂

Le cas d'un milieu poreux constitué de canaux parallèles a été considéré en [1, 2, 3], le
problème présenté ici est plus compliqué du fait de l'absence, en général, de solutions
complètement explicites

Si nous désignons par A l'opérateur associé au problème couplé ( - Au = ÛJ2U) et par
Ap(x2) l'opérateur associé au problème dans une lamelle de flp, nous considérons deux cas
suivant les valeurs de <w2 Dans le premier cas {où <o2 n'est pas valeur propre de
Ap), nous montrons que le problème aux valeurs propres pour A se ramène à un problème aux
valeurs propres implicites dans ftf Dans le second cas (lorsque wz est valeur propre de
Ap(a2)> pour une certaine valeur a2 de x^ nous montrons que OÙ2 est un point du spectre essentiel
de A
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1. INTRODUCTION

The équations describing the acoustic vibration in a porous medium,
made by channels in a solid body, were obtained by using homogenization
techniques [1, 3, 8, 9]. The spectral properties of the associated operator are
classical in the case of a porous medium made by channels in ail directions,
Le. when the fluid région is conneeted. In the case of channels in one
direction, the properties of the homogenized équations are very different [1]
because the waves propagate only in the direction of the channels. As a
conséquence the compactness properties are lost. The same occurs in the
case of parallel plane sheets which we consider hère. Certain proofs are
technically cumbersome, we only give an outline which is sufficient for the
logic understanding of them. Complete proofs are given in [7],

In the first section, we set the problem and give its variational
formulation ; in the following sections we study the structure of the
spectrum. S o, we shall show that :

1. a) 2 = 0 is a simple eigenvalue of the operator A associated with the
coupled eigenvalue problem.

2. When il ƒ = 0 , the set of the points o>2 which are eigenvalues of the
Neumann-Dirichlet problem in any sheet located in the plane x2 —
Const. constitutes the essential spectrum of Ap (associated with the problem
in Op).

3. When 12f ^ 0 , for particular geometries (see Sect. 5), we show that
the set defined by

E = {a>2 ; co 2 is an eigenvalue of the problem in a sheet }

belongs to the essential spectrum of A.
4. For a particular geometry (see Sect. 5), we prove that the points

a)2 which belong to the résolvent set p{Ap{x2)), for any x2 £ [0, 1], are
either eigenvalues of finite multiplicity of A, or points of the résolvent set
p(A).

The authors want to thank G. Geymonat for his valuable remarks and
comments.

2. SETTING OF THE PROBLEM. VARIATIONAL FORMULATION

We consider a porous medium, made of very many thin sheets disposed as
in figure 2.1, which occupies the domain flp of IR3 defined by

&P = {(*i, x2, x3), xx e ]- 2(x2, JC3), 0[ , x2 G ]0, 1[, x3 G ]0, 1[}

where 2(x2, x3) is a smooth strictly positive function.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



ON A COUPLED COMPACT-NONCOMPACT PROBLEM 661

That porous medium is in contact with free air contained in some région
f of IR3. The interface F is disposed as in figure 2.1.

r (x^O, Osx^l»

Figure 2.1.

In the sequel, we shall dénote by v the outer unit normal to the curve
xx = - î (*2, x3) in its plane, and by n the outer normal to the boundary
bfîf of f}f.

The équations and boundary conditions of the homogenized problem are
immediately deduced from [1], they are :

d2u b2u
-

bxl dx2
= 0 m

bu „ n , v

— = 0 on xl = - K (x2, x3)

— = 0 on x-y = 0 and x-x = 1
dx3

in

(2.1)

(2.2)

(2.3)

(2.4)

(2-5)

(2.6)

where [[ . ]] dénotes the jump across the interface F. The unknown u
dénotes the velocity potential.

— = 0 on df2f\r.
bn J
bn

As for the transmission conditions on F, they are :

W-o. [|]=o .»
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We note that (2.1)-(2.6) was wntten in ternis of a classical eigenvalue
problem, î.e. for an eigenfunction u and an eigenvalue a>2. We shall refer to
this system in the sequel even in the case when the points to 2 belong to the
essential spectrum of the corresponding operator A (dohned later) for which
evident modifications must be considered.

Let us define

n = np u nf u r
and

V = P E L 2 ( / 2 ) ; — E L 2 ( / 2 ) , a = 1, 3 ; — (v\n ) s L \ n f ) \ (2.7)
1 dxa dx2 '% M

It is easily proved that the problem (2.1)-(2 6) is equivalent to the folio wing
one :

Fmd u e V and <o E IR such that :

dx + dx = £t> MU t/x Vr E y (2.8)

J ^ 9xz dXi J/2p
 9X« 6Xa J/3

with i = 1, 2, 3 and a = 1, 3.
Then, classically ([3] Chap. IV for instance) we have :

PROPOSITION 2.1 : The space V, defined by (2.7), equipped with the scalar
product

(w, v)v = a(u, v) + (M, v)L2(n)

where a(u, v) is the bihnear form defined by the left hand side of (2.8), is a
Hubert space and the imbedding of V in H is dense, continuons but not
compact

The associated selfadjoint operator A is defined in the domain

D(A)= lv eL2(f2) ; A(v | ^ ) E L2(Üf), ~^ (v \n) e L2{f2p\ a = 1, 3,

v satisfying the conditions (2.2), (2.3), (2.5), (2.6)}

and Av is defined by

Av =
— Av in Of

d2v d2v „

dx2 dx2
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It is well known that the spectrum cr (A) may have a somewhat
complicated structure, essential spectrum ([3], Sects. 111,7 and IV.3),
containing eigenvalues of infinité multiplicity, accumulation points of
eigenvalues or a continuous spectrum. We now study the structure of that
spectrum.

From the définition of the operator A, it is easily seen that co2 = 0 is a
simple eigenvalue, the corresponding eigenfunctions being u — Const.

We now searchfor eigenvalues A = co2 ̂  0, We first consider the problem
in Op, with f2f = 0 , and dénote by Ap(x2) the associated operator (in a
sheet situated in the plane x2 — Const.) with the boundary condition

ie| r = O. (2.9)

Then, for the spectral study of the System (2.1)-(2.6), we have to consider
the two following cases :

1) w2is a point of the résolvent set p(Ap(x2)) for any x2 e [0, 1],
2) (o2 is such that : 3a2 e [0, 1] for which co2 is an eigenvalue of the

operator Ap(a2).

3. SPECTRAL STUDY OF THE COUPLED SYSTEM WHEN a>2 SATISFIES 1)

Our purpose is, as in [2], to show that the points À = w2 are isolated
eigenvalues with finite multiplicity or points of the résolvent set p (A ). To
this end, we first prove that the spectral problem (2.1)-(2.6) reduces to an
implicit eigenvalue problem in f2f.

Since co 2 belongs to the résolvent set of the operator associated with the
problem in each sheet, by using classical results (see [6] and for details [7])
we have :

PROPOSITION 3.1 : Let be <p a given function

<p 6 l J 2 ( ( 0 , l ) ; / / 1 / 2 ( 0 , 1 ) ) ,

then, the problem

_?u tu a>2u = 0 in np (3.1)
dx2 bxl P

— = 0 on x3 = 0 and x3 = 1 (3.2)
dx
T^- = 0 on xx = -l(x2,x3) (3.3)
ov

u — cp on F (3.4)

vol. 26, n° 6, 1992
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has a unique solution u^ for any a>2 satisfying 1) and

s Hl(nn)dx7}
where the classical notation (Cf [5], Chap IV, Sect 5) was used for the
space intégral

Now, we define the family of operators T(<o) by

T{<o) <p =
en

(3 5)

where u% is the unique solution of (3 2)-(3 5), and we dénote by
Ex(x2) and by E[(x2) (dual of Ex(x2) the two spaces, defined for fixed
x2 m [0, 1] by

, 1],

, 1))

)'(0, D)

Then we classically ([6], [8]) have

PROPOSITION 3 2 The operator T, defined by (3 5), enjoys the proper-
ties

a)
b) T is holomorphic with respect to <o

And, solving in I2p, we have

PROPOSITION 3 3 Letbe w2 satisfying 1), then the spectral problem (2 1)-
(2 6) is equivalent to the implicit eigenvalue problem in ûf

F indu eHl(f2f) , w^O and co2 e U+ such that

Vu.Vvdx+ (T(a>)u,v) =

• u.vdx Vt? s H \Of) (3 6)

Now, we have to prove that the points o>2 which venfy 1) are either
eigenvalues of finite multiplicity or points of the résolvent set of the
operator A (Of), associated with the form af(a> , M, V) defined by the left
hand side of (3 7) This follows from Proposition V, 7 5 in [3] provided that
the coerciveness of af(<o , v, v) holds at some point The property of
coerciveness was proved in the case of a porous medium made of channels
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[2]. In the case of sheets, explicit computations were performed for
particular geometries. It is the case for the problem associated with the
figure 5.1 where the sheets are circular rings defined, in cylindrical
coordinates, by Const. = r0 <c r < l (z ). By writing the problem in cylindrical
coordinates r, 0, z, using asymptotic expansion of Bessel functions as the
index tends to infinity and Fourier expansions in L2{F) it is possible to
prove, thanks to [5], the coerciveness of af. In short, whenever it is possible
to give explicit solutions, the coerciveness is proved. Consequently, we can
reasonably think that the form a f is al s o coercive in any case, but no
technically easy to prove.

4. SPECTRAL STUDY OF THE PROBLEM IN 12p WHEN <o2 SATISFIES 2)

In this section, we consider the eigenvalue problem in Qp with

For fixed x2, x2 = a2, let us dénote by Ap(a2) the operator associated with
the problem in the corresponding sheet :

- co 2 u = 0 in the sheet x 2 = a2 (4.1)
bxf dx3

^ - 0 on x1 = - f ( a 2 , x 3 ) (4.2)

— ^ 0 on x3 = 0 and x3 = 1 (4.3)
ox3

u = 0 on r (i.e. JCJ = 0, x2 = a2) . (4.4)

The operator Ap{a2) has a compact inverse and, consequently, possesses a
countable infinity of positive eigenvalues such that

0 < ^0(^2) ^ m \(a2) ^ * * * - • 00 .

We shall dénote by u^{xly x3) an associated eigenfunction.
Our purpose is to show that <o2, satisfying 2), belongs to the essential

spectrum o-QSS(Ap) of Ap (operator associated with the problem in
Op with Hf = 0 ). To this end we have to construct a Weyl séquence
(Proposition IV.3.2 in [3]).

In order to simplify the computations, we suppose that the function 2 does
not depend on x3 so, we define 2X by

ei(x2)^t(x29x3). (4.5)
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Let us remark that, in that case, the eigenvalues and eigenvectors are
explicitely known :

m = k 7T2 + \— ; uai = f (x2) sm
 v ' xx cos (2 *x3)

4 ( ) £ i a

but these expressions will not be used in the sequel.
It is clear that, if M^Oq, x3) is solution of (4.1)-(4.4) then, the function

W(JC1S x2, w3) defined in /2p by

/ *l(O2) \
, x2, x3) = ƒ (x2) MÛ2 ^ - j - — x1? x3 (4.6)

\ K x ) I
satisfies the boundary conditions (4.2)-(4.4).

We then easily see that the distribution defined in 12p by

C Ô (x2 - a2) uai l j L - L Xh X3 \ (4.7)

where C is an arbitrary constant, is a solution of the problem (4.1)-(4.4) in
the sensé of distributions.

But, as "B does not belong to

D(Ap) = \veL2(np); —- —2e L\üp) ,

v satisfying the boundary conditions (4,2)- (4.4)}

T> is not an eigenfunction. We shall replace 8 by a séquence of smooth
functions tending to 8 in order to prove that the corresponding fx = o>2 is a
point of cress(A ).

4,1. Construction of a Weyl séquence

Let ( ^ G ^ ( R ) and c be respectively such that

JR JU

and let us define the séquence

, * = 1 , 2 , . . . (4.8)
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ON A COUPLED COMPACT-NONCOMPACT PROBLEM 667

which enjoys the properties

5 as U o o in ^ ' (R)

(4.9)

Supp. if/k a [- l/k, l/k] .

Then, in 12pt we define the séquence wk(xx, x2, x$) by

L

wk(x)=—n uA ,x3) . (4.10)

Now, we have still to prove that the séquence defined by (4.10) satisfies
the hypotheses of the Weyl's theorem of characterization of the essential
spectrum, namely :

/ y ^ 1 a s * - + °° (4.11)

wk -H. 0 in L2(f2p) weakly (4.12)

| | ( A ; 3 - ^ 2 / ) W , | | L 2 ( ^ ) ^ O as k^ + ao. (4.13)

This is easily checked from (4.10).
Moreover, we have :

PROPOSITION 4.1 : Let us dénote by ë the set defined by

ê ~ {(o2 e U+ ; (o2 is an eigenvalue of the problem (4.1)-(4.4) in a sheet} ,

and by ê its closure then, we have

* = ^M8(Ap). (4.14)

Proof : From the previous results, if co2 e S then o»2 is a point of
°"ess(̂ p)> consequently

Conversely, we have

Indeed, it is easily proved, by integrating in x2 that, if co2 £ ë, then
co2 belongs to the résolvent set p{Ap). •

vol. 26, n° 6, 1992
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Remark 4.2 : Hypothesis (4.5) is not essential, we obtain Proposition 4.1
in the gênerai case, where xx = — î (x2, x3), by using the theory of
perturbation of the boundary (see [3], Sect. V.5).

5. SPECTRAL STUDY OF THE COUPLED PROBLEM WHEN <*>2 SATISFIES 2)

We consider now the porous medium Op in contact with the air contained
in a bounded domain Of of IR3. We show that if co 2 is an eigenvalue of the
problem in a sheet, then co2 belongs to the cress(A), where A dénotes the
operator associated with the coupled problem in fl. To this end, as in the
preceding section, we construct a Weyl séquence.

5.1. Construction of a Weyl séquence vk

The séquence vk is obtained by means of its restrictions to Op and

nf.
Construction of vk in Op : We search for vk j n of the form

vk\np = w*(*i. x2, x3) 4- wk(x2, x3) (5.1)

where wk is the séquence defined in (4.10) and wk a function to be defined
later, such that [[t^jj = 0 on i".

Construction ofvk in f2 ƒ : We take, as restriction to f2 ̂  vk | n solution of the
Neumann problem in f2 j- :

(~A~(o2I)vk=0 in üf (5.2)

— = 0 on df2f\r (5.3)

_ * = -Z* (0, x2, x3) on T (5.4)

which has a unique solution when a>2 is not an eigenvalue of (5.2)-(5.4), that
we shall suppose in the sequel. Then the trace of vk | n is well defined and
we take

), x2, x3) . (5.5)

Consequently the séquence vk is well determined and we immediately verify
that vk e D(A ).
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We have still to prove that vk is a Weyl séquence, that is to say that
vk9 defined by its restrictions vk ( ûf and vk | ̂  (respectively defined by (5.1),
(5.2M5.4) and (5.5)) satisfies

2{vk-^0 in L 2{O ) weakly (5.7)

\\(A-a>2I)vk\\L2{n)^O as k -> + oo (5.8)

Since we have

\np) (5.9)

and as wk is yet a Weyl séquence in Op, (5.6) and (5.7) immediately follows
from the following lemma :

LEMMA 5.1 : Let be vk^n o,nd wk the séquences defined respectively by

(5.2)-(5.4) and (5.5), then we have

\\w^\\L2(n ^ s P-ll)

Proof : From classical estimâtes [6], we have, for 0 < ô -< 1

S IL—en (5-i2)
consequently, the proof of (5.10) reduces to prove that

— - - K O i n L 2 ( r ) weakly (=> in H~ 1 + 5 ( r ) strongly) . (5.13)

Now, from the construction of the wk, we easily show that

f / dwk \2
I ) dxx dx2

Jr \ bxi I

is bounded independently of k ; then we have still to prove that

that is easily obtained from the properties of the i//k (cf. (4.10)).
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As for (5.11), by using the property of continuity of the traces from
m + Ô(nf) into Hs(r) and taking account of (5.12), we have

as oo

and the Lemma is proved.

Now, from the définition of the operator A, we have

(A - co 2I)vk = O

d2wk d2wk

dxf

in

— a> w^ i n

and wk is such that

32w^

dxf ax
2

j-CO Wk -^0 as k -> + oo

then, taking into account (5.11), (5.8) will be proved if we show that
wk, defmed by (5.5), is such that

d2wk

dxi
0 as k - • 00 (5.14)

As wk is smooth in x3, it is easily seen that d2vk/dx2 satisfies, in
f2f3 the équation (5.2) and the boundary condition obtained by differenciat-
ing (5.4) with respect to x3 twice, but does not satisfy (5.3) except for
particular geometries. Let us suppose that Of satisfies the following
property :

(P) : Üf is such that if vk satisfies (5.2), (5.3) and (5.4), then
d2vk/bx2 satisfies them too.

Then, we have

dx2 0 in H s + 1/2( üf ) strongly for 0 -< 8

which is analogous to (5.12).
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Now, we have

671

dx2

b2wk

<- c 9 Vk

dx2
(0, j

9 2 ^

-2> ^3)

L 2(f)

5(r)
«c 2

and consequently (5.14).
Exemples of such a geometry are cylinders with generators parallel to

x3 and periodicity conditions with respect to x3.
Then we have

THEOREM 5.2 : For any domain O ƒ the geometry of which satisfies the
hypothesis (P), the points A = <o2 which are eigenvalues of the problem
(4. l)-(4.4) in a sheet of the plane x2 = Const. but which are not eigenvalues of
the Neumann problem in Df, belong to the essential spectrum of the coupled
problem in Q.

Remark 5.3 : Computations in cylindrical coordinates (r, 0, z) allow us to
consider other geometrie s. In particular, domains with symmetry of
révolution around of the axis z as in figure 5.1.

sheet in the plane xo = const.

(cylindrical coordirtates r,e»z)

Figure 5.1.

More exactly, in the particular case of figure 5.1 we proved [7] :

THEOREM 5.4 : When the problem is periodic with respect to 0 and the
function 2 dépends only on z.

a) If A = (o2 is a point of the résolvent set p(Ap(z)) for any z G [0, 1],
then A = a>2is either eigenvalue offinite multiplicity or point ofthe résolvent
set.
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672 A. BENKADDOUR, J. SANCHEZ-HUBERT

b) If A = (o2 is such that there exists a2 e [0, 1] for which A = <o2 is an
eigenvalue ofthe operator Ap(a2) and is not an eigenvalue of the problem in
f2f, then A = <o2 belongs to the essential spectrum of the coupled problem.

REFERENCES

[1] F. FLEURY and E. SANCHEZ-PALENCIA, Asymptotic and spectral proper ne s ofthe
acoustic vibrations of body petforated by narrow channels, Bull. Sci. Math,
2sd série, 110 (1986) pp. 149-176.

[2] A. BENKADDOUR, Un opérateur à résolvante non compacte pour un problème
couplé de vibrations acoustiques, C.R. Acad. Sci., Pans, t. 309, séné I (1989)
pp. 265-268.

[3] J. SANCHEZ-HUBERT and E. SANCHEZ-PALENCIA, Vibration and couphng of
continuons Systems Asymptotic methods, Springer-Verlag (1989).

[4] J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et
applications, t. 1, Dunod, Pans (1967).

[5] J. L. LIONS, Équations différentielles opérationnelles, Springer (1965).
[6] P. GRISVARD, Elhptic problems in non smooth domains, Mqmographs Stud.

Math., 24, Pitman, London (1985).
[7] A. BENKADDOUR, Étude du spectre d'opérateurs dans des problèmes de couplage

compact-non compact, Thèse de l'Université P. et M. Cime (1990).
[8] E. SANCHEZ-PALENCIA, Non homogeneous media and vibration theory, Lecture

Notes in Physics, Berlin (1980).
[9] T. LÉVY, Propagation of waves in a fluid saturated porous elastic solid, Intern. J.

Eng. Sci., 17 (1979) pp. 1005-1014.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis


