M2AN. Mathematical modelling and numerical analysis
 - Modélisation mathématique et analyse numérique

A. BENKADDOUR

J. SANCHEZ-HUBERT

Spectral study of a coupled compactnoncompact problem

M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique, tome $26, \mathrm{n}^{\circ} 6$ (1992), p. 659-672
http://www.numdam.org/item?id=M2AN_1992__26_6_659_0
© AFCET, 1992, tous droits réservés.
L'accès aux archives de la revue «M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

SPECTRAL STUDY OF A COUPLED COMPACT-NONCOMPACT PROBLEM (*)

by A. Benkaddour (${ }^{1}$) and J. Sanchez-Hubert (${ }^{2}$)

Communicated by P Geymonat

Abstract

We consider the coupled problem of acoustic vibration of air in a porous medium Ω_{p}, made of infinitely close thin sheets, parallel to the plane $\left(x_{1}, x_{3}\right)$, in contact with free air in some region Ω_{f} We assume that there is no interaction between the sheets unless by the region Ω_{f}

The case of a porous medium made of thin channels parallel to the x_{1}-axis was considered in [1,
2, 3] In this paper, we consider a somewhat more complicated problem because completely expluctt solutions are not avalable in general

Let us denote by A the operator associated with the coupled eigenvalue problem ($-A u=\omega^{2} u$) and by $A_{p}\left(x_{2}\right)$ the operator assoctated in the sheet $x_{2}=$ Const in Ω_{p} In order to study the spectrum of A we consider two cases according to the values of ω^{2}. In the first case (when ω^{2} is not an elgenvalue of the problem in Ω_{p}), the problem reduces to an implicit eigenvalue problem in Ω_{f}, in the second case (when ω^{2} is an eigenvalue of $A_{p}\left(a_{2}\right)$ for some value a_{2} of x_{2}), we show that ω^{2} belongs to the essenttal spectrum of A

Résumé. -Nous étudıons la structure du spectre d'un opérateur assocté à un problème couplé de vıbratıons acoustıques Plus précısément, nous consıdérons un milıeu poreux Ω_{p}, constıtué par un grand nombre de lamelles planes unıformément distribuées, en contact avec une cavité remplıe d'air, que nous désıgnerons par Ω_{f} Nous supposons qu'll n'y a pas d'interactıon entre les lamelles, sauf par la régıon Ω_{f}

Le cas d'un mılıeu poreux constıtué de canaux parallèles a été consıdéré en [1, 2, 3], le problème présenté lcl est plus complıqué du fait de l'absence, en général, de solutions complètement explicites

Sl nous désıgnons par A l'opérateur assocté au problème couplé ($-A u=\omega^{2} u$) et par $A_{p}\left(x_{2}\right)$ l'opérateur assocıé au problème dans une lamelle de Ω_{p}, nous consıdérons deux cas sulvant les valeurs de ω^{2} Dans le premier cas (où $\omega^{2} n^{\prime}$ 'est pas valeur propre de A_{p}), nous montrons que le problème aux valeurs propres pour A se ramène à un problème aux valeurs propres implicites dans Ω_{f} Dans le second cas (lorsque ω^{2} est valeur propre de $A_{p}\left(a_{2}\right)$, pour une certaine valeur a_{2} de x_{2}) nous montrons que ω^{2} est un point du spectre essentiel de A
(*) Received for publication January 14, 1991
${ }^{(1)}$ Unıversité Abdelmalek Essaadı, Faculté des Scıences, B P 2121, Tetouan, Maroc
$\left.{ }^{(2}\right)$ Unıversité de Caen, U F R de Sciences, Esplanade de la Paıx, 14032 Caen Cedex, France, and Laboratore de Modélısatıon en Mécanıque, C N R S 229, Unıversité P et M Curie, Tour 66, 4 place Jussieu, 75752, Parıs Cedex, France

[^0]
1. INTRODUCTION

The equations describing the acoustic vibration in a porous medium, made by channels in a solid body, were obtained by using homogenization techniques $[1,3,8,9]$. The spectral properties of the associated operator are classical in the case of a porous medium made by channels in all directions, i.e. when the fluid region is connected. In the case of channels in one direction, the properties of the homogenized equations are very different [1] because the waves propagate only in the direction of the channels. As a consequence the compactness properties are lost. The same occurs in the case of parallel plane sheets which we consider here. Certain proofs are technically cumbersome, we only give an outline which is sufficient for the logic understanding of them. Complete proofs are given in [7].

In the first section, we set the problem and give its variational formulation; in the following sections we study the structure of the spectrum. So, we shall show that :

1. $\omega^{2}=0$ is a simple eigenvalue of the operator A associated with the coupled eigenvalue problem.
2. When $\Omega_{f}=\varnothing$, the set of the points ω^{2} which are eigenvalues of the Neumann-Dirichlet problem in any sheet located in the plane $x_{2}=$ Const. constitutes the essential spectrum of A_{p} (associated with the problem in Ω_{p}).
3. When $\Omega_{f} \neq \varnothing$, for particular geometries (see Sect. 5), we show that the set defined by

$$
E=\left\{\omega^{2} ; \omega^{2} \text { is an eigenvalue of the problem in a sheet }\right\}
$$

belongs to the essential spectrum of A.
4. For a particular geometry (see Sect. 5), we prove that the points ω^{2} which belong to the resolvent set $\rho\left(A_{p}\left(x_{2}\right)\right)$, for any $x_{2} \in[0,1]$, are either eigenvalues of finite multiplicity of A, or points of the resolvent set $\rho(A)$.

The authors want to thank G. Geymonat for his valuable remarks and comments.

2. SETTING OF THE PROBLEM. VARIATIONAL FORMULATION

We consider a porous medium, made of very many thin sheets disposed as in figure 2.1 , which occupies the domain Ω_{p} of \mathbb{R}^{3} defined by

$$
\Omega_{p}=\left\{\left(x_{1}, x_{2}, x_{3}\right), x_{1} \in\right]-\ell\left(x_{2}, x_{3}\right), 0\left[, \quad x_{2} \in\right] 0,1\left[, x_{3} \in\right] 0,1[\}
$$

where $\ell\left(x_{2}, x_{3}\right)$ is a smooth strictly positive function.

That porous medium is in contact with free air contained in some region Ω_{f} of \mathbb{R}^{3}. The interface Γ is disposed as in figure 2.1.

Figure 2.1.

In the sequel, we shall denote by ν the outer unit normal to the curve $x_{1}=-\ell\left(x_{2}, x_{3}\right)$ in its plane, and by \mathbf{n} the outer normal to the boundary $\partial \Omega_{f}$ of Ω_{f}.

The equations and boundary conditions of the homogenized problem are immediately deduced from [1], they are :

$$
\begin{gather*}
-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{3}^{2}}-\omega^{2} u=0 \quad \text { in } \quad \Omega_{p} \tag{2.1}\\
\frac{\partial u}{\partial \nu}=0 \quad \text { on } \quad x_{1}=-\ell\left(x_{2}, x_{3}\right) \tag{2.2}\\
\frac{\partial u}{\partial x_{3}}=0 \quad \text { on } \quad x_{3}=0 \quad \text { and } \quad x_{3}=1 \tag{2.3}\\
-\Delta u-\omega^{2} u=0 \quad \text { in } \quad \Omega_{f} \tag{2.4}\\
\frac{\partial u}{\partial n}=0 \quad \text { on } \quad \partial \Omega_{f} \backslash \Gamma . \tag{2.5}
\end{gather*}
$$

As for the transmission conditions on Γ, they are:

$$
\begin{equation*}
\llbracket u \rrbracket=0, \quad \llbracket \frac{\partial u}{\partial x_{1}} \rrbracket=0 \quad \text { on } \quad \Gamma \tag{2.6}
\end{equation*}
$$

where $[\mathbb{I}]$ denotes the jump across the interface Γ. The unknown u denotes the velocity potential.

We note that (2.1)-(2.6) was written in terms of a classical eigenvalue problem, i.e. for an eigenfunction u and an eigenvalue ω^{2}. We shall refer to this system in the sequel even in the case when the points ω^{2} belong to the essential spectrum of the corresponding operator A (defined later) for which evident modifications must be considered.

Let us define

$$
\Omega=\Omega_{p} \cup \Omega_{f} \cup \Gamma
$$

and

$$
\begin{gather*}
H \equiv L^{2}(\Omega) \\
V=\left\{v \in L^{2}(\Omega) ; \frac{\partial v}{\partial x_{\alpha}} \in L^{2}(\Omega), \alpha=1,3 ; \frac{\partial}{\partial x_{2}}\left(\left.v\right|_{\Omega_{f}}\right) \in L^{2}\left(\Omega_{f}\right)\right\} \tag{2.7}
\end{gather*}
$$

It is easily proved that the problem (2.1)-(2 6) is equivalent to the following one :

$$
\left\{\begin{array}{c}
\text { Find } u \in V \text { and } \omega \in \mathbb{R} \text { such that : } \tag{2.8}\\
\int_{\Omega_{f}} \frac{\partial u}{\partial x_{\imath}} \frac{\partial v}{\partial x_{\imath}} d x+\int_{\Omega_{p}} \frac{\partial u}{\partial x_{\alpha}} \frac{\partial v}{\partial x_{\alpha}} d x=\omega^{2} \int_{\Omega} u v d x \quad \forall v \in V
\end{array}\right.
$$

with $\imath=1,2,3$ and $\alpha=1,3$.
Then, classically ([3] Chap. IV for instance) we have :
Proposition 2.1: The space V, defined by (2.7), equipped with the scalar product

$$
(u, v)_{V}=a(u, v)+(u, v)_{L^{2}(\Omega)}
$$

where $a(u, v)$ is the bilinear form defined by the left hand side of (2.8), is a Hilbert space and the imbedding of V in H is dense, continuous but not compact

The associated selfadjoint operator A is defined in the domain

$$
\begin{aligned}
D(A)=\left\{v \in L^{2}(\Omega)\right. & ; \Delta\left(\left.v\right|_{\Omega_{f}}\right) \in L^{2}\left(\Omega_{f}\right), \frac{\partial}{\partial x_{\alpha}^{2}}\left(\left.v\right|_{\Omega_{p}}\right) \in L^{2}\left(\Omega_{p}\right), \alpha=1,3, \\
& v \text { satisfyıng the conditlons }(2.2),(2.3),(2.5),(2.6)\}
\end{aligned}
$$

and $A v$ is defined by

$$
A v=\left\{\begin{array}{lll}
-\Delta v & \text { in } & \Omega_{f} \\
-\frac{\partial^{2} v}{\partial x_{1}^{2}}-\frac{\partial^{2} v}{\partial x_{3}^{2}} & \text { in } & \Omega_{p}
\end{array}\right.
$$

It is well known that the spectrum $\sigma(A)$ may have a somewhat complicated structure, essential spectrum ([3], Sects. III. 7 and IV.3), containing eigenvalues of infinite multiplicity, accumulation points of eigenvalues or a continuous spectrum. We now study the structure of that spectrum.

From the definition of the operator A, it is easily seen that $\omega^{2}=0$ is a simple eigenvalue, the corresponding eigenfunctions being $u=$ Const.

We now search for eigenvalues $\lambda=\omega^{2} \neq 0$. We first consider the problem in Ω_{p}, with $\Omega_{f}=\varnothing$, and denote by $A_{p}\left(x_{2}\right)$ the associated operator (in a sheet situated in the plane $x_{2}=$ Const.) with the boundary condition

$$
\begin{equation*}
\left.u\right|_{\Gamma}=0 \tag{2.9}
\end{equation*}
$$

Then, for the spectral study of the system (2.1)-(2.6), we have to consider the two following cases:

1) ω^{2} is a point of the resolvent set $\rho\left(A_{p}\left(x_{2}\right)\right)$ for any $x_{2} \in[0,1]$,
2) ω^{2} is such that: $\exists a_{2} \in[0,1]$ for which ω^{2} is an eigenvalue of the operator $A_{p}\left(a_{2}\right)$.

3. SPECTRAL STUDY OF THE COUPLED SYSTEM WHEN ω^{2} SATISFIES 1)

Our purpose is, as in [2], to show that the points $\lambda=\omega^{2}$ are isolated eigenvalues with finite multiplicity or points of the resolvent set $\rho(A)$. To this end, we first prove that the spectral problem (2.1)-(2.6) reduces to an implicit eigenvalue problem in Ω_{f}.

Since ω^{2} belongs to the resolvent set of the operator associated with the problem in each sheet, by using classical results (see [6] and for details [7]) we have:

Proposition 3.1: Let be φ a given function

$$
\varphi \in L_{x_{2}}^{2}\left((0,1) ; H^{1 / 2}(0,1)\right)
$$

then, the problem

$$
\begin{gather*}
-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{3}^{2}}-\omega^{2} u=0 \quad \text { in } \quad \Omega_{p} \tag{3.1}\\
\frac{\partial u}{\partial x_{3}}=0 \quad \text { on } \quad x_{3}=0 \quad \text { and } \quad x_{3}=1 \tag{3.2}\\
\frac{\partial u}{\partial \nu}=0 \quad \text { on } \quad x_{1}=-\ell\left(x_{2}, x_{3}\right) \tag{3.3}\\
u=\varphi \quad \text { on } \quad \Gamma \tag{3.4}
\end{gather*}
$$

vol. $26, \mathrm{n}^{\circ} 6,1992$
has a unıque solution u_{ω}^{φ} for any ω^{2} satısfying 1) and

$$
u_{\omega}^{\varphi} \in \mathscr{H}\left(\Omega_{p}\right) \equiv \int_{0}^{1} H_{x_{2}}^{1}\left(\Omega_{p}\right) d x_{2}
$$

where the classical notation (Cf [5], Chap IV, Sect 5) was used for the space integral

Now, we define the famıly of operators $T(\omega)$ by

$$
\begin{equation*}
T(\omega) \varphi=\left.\frac{\partial u_{\omega}^{\varphi}}{\partial n}\right|_{\Gamma} \tag{35}
\end{equation*}
$$

where u_{ω}^{φ} is the unique solution of (32)-(35), and we denote by $E_{1}\left(x_{2}\right)$ and by $E_{1}^{\prime}\left(x_{2}\right)$ (dual of $E_{1}\left(x_{2}\right)$ the two spaces, defined for fixed x_{2} in $[0,1]$ by

$$
\begin{aligned}
& E_{1}\left(x_{2}\right) \equiv L_{x_{2}}^{2}\left([0,1], H^{1 / 2}(0,1)\right) \\
& E_{1}^{\prime}\left(x_{2}\right) \equiv L_{x_{2}}^{2}\left([0,1],\left(H^{1 / 2}\right)^{\prime}(0,1)\right)
\end{aligned}
$$

Then we classically ([6], [8]) have
PROPOSITION 32 The operator T, defined by (35), enjoys the properties
a) $\quad T \in \mathscr{L}\left(E_{1}, E_{1}^{\prime}\right)$
b) Tis holomorphic with respect to ω

And, solving in Ω_{p}, we have
Proposition 33 Let be ω^{2} satisfying 1), then the spectral problem (2 1)(2 6) is equivalent to the implicit eigenvalue problem in Ω_{f}

$$
\left\{\begin{align*}
& F ı n d u \in H^{1}\left(\Omega_{f}\right), u \neq 0 \text { and } \omega^{2} \in \mathbb{R}^{+} \text {such that } \tag{36}\\
& \int_{\Omega_{f}} \nabla u \cdot \nabla v d x+\langle T(\omega) u, v\rangle_{E_{1} E_{1}}= \\
&=\omega^{2} \int_{\Omega_{f}} u \cdot v d x \quad \forall v \in H^{1}\left(\Omega_{f}\right)
\end{align*}\right.
$$

Now, we have to prove that the points ω^{2} which verify 1) are either eigenvalues of finite multiplicity or points of the resolvent set of the operator $A\left(\Omega_{f}\right)$, associated with the form $a_{f}(\omega, u, v)$ defined by the left hand side of (37) This follows from Proposition V, 75 in [3] provided that the coerciveness of $a_{f}(\omega, v, v)$ holds at some point The property of coerciveness was proved in the case of a porous medium made of channels
[2]. In the case of sheets, explicit computations were performed for particular geometries. It is the case for the problem associated with the figure 5.1 where the sheets are circular rings defined, in cylindrical coordinates, by Const. $=r_{0}<r<\ell(z)$. By writing the problem in cylindrical coordinates r, θ, z, using asymptotic expansion of Bessel functions as the index tends to infinity and Fourier expansions in $L^{2}(\Gamma)$ it is possible to prove, thanks to [5], the coerciveness of a_{f}. In short, whenever it is possible to give explicit solutions, the coerciveness is proved. Consequently, we can reasonably think that the form a_{f} is also coercive in any case, but no technically easy to prove.

4. SPECTRAL STUDY OF THE PROBLEM IN $\boldsymbol{\Omega}_{p}$ WHEN $\boldsymbol{\omega}^{\mathbf{2}}$ SATISFIES 2)

In this section, we consider the eigenvalue problem in Ω_{p} with $\Omega_{f}=\varnothing$.

For fixed $x_{2}, x_{2}=a_{2}$, let us denote by $A_{p}\left(a_{2}\right)$ the operator associated with the problem in the corresponding sheet :

$$
\begin{gather*}
-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{3}^{2}}-\omega^{2} u=0 \quad \text { in the sheet } \quad x_{2}=a_{2} \tag{4.1}\\
\frac{\partial u}{\partial \nu}=0 \quad \text { on } \quad x_{1}=-\ell\left(a_{2}, x_{3}\right) \tag{4.2}\\
\frac{\partial u}{\partial x_{3}}=0 \quad \text { on } \quad x_{3}=0 \quad \text { and } \quad x_{3}=1 \tag{4.3}\\
\left.u=0 \quad \text { on } \quad \Gamma \text { (i.e. } x_{1}=0, x_{2}=a_{2}\right) . \tag{4.4}
\end{gather*}
$$

The operator $A_{p}\left(a_{2}\right)$ has a compact inverse and, consequently, possesses a countable infinity of positive eigenvalues such that

$$
0<\omega_{0}^{2}\left(a_{2}\right) \leqslant \omega_{1}^{2}\left(a_{2}\right) \leqslant \cdots \rightarrow \infty .
$$

We shall denote by $u_{a_{2}}\left(x_{1}, x_{3}\right)$ an associated eigenfunction.
Our purpose is to show that ω^{2}, satisfying 2), belongs to the essential spectrum $\sigma_{\text {ess }}\left(A_{p}\right)$ of A_{p} (operator associated with the problem in Ω_{p} with $\Omega_{f}=\varnothing$). To this end we have to construct a Weyl sequence (Proposition IV.3.2 in [3]).

In order to simplify the computations, we suppose that the function ℓ does not depend on x_{3} so, we define ℓ_{1} by

$$
\begin{equation*}
\ell_{1}\left(x_{2}\right) \equiv \ell\left(x_{2}, x_{3}\right) . \tag{4.5}
\end{equation*}
$$

vol. $26, n^{\circ} 6,1992$

Let us remark that, in that case, the eigenvalues and eigenvectors are explicitely known :

$$
\omega^{2}=k^{2} \pi^{2}+\frac{(2 m+1)^{2} \pi^{2}}{4 \ell_{1}^{2}\left(a_{2}\right)} ; \quad u_{a_{2}}=f\left(x_{2}\right) \sin \frac{(2 m+1) \pi}{2 \ell_{1}\left(a_{2}\right)} x_{1} \cos \left(2 k x_{3}\right)
$$

but these expressions will not be used in the sequel.
It is clear that, if $u_{a_{2}}\left(x_{1}, x_{3}\right)$ is solution of (4.1)-(4.4) then, the function $w\left(x_{1}, x_{2}, w_{3}\right)$ defined in Ω_{p} by

$$
\begin{equation*}
w\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{2}\right) u_{a_{2}}\left(\frac{\ell_{1}\left(a_{2}\right)}{\ell_{1}\left(x_{2}\right)} x_{1}, x_{3}\right) \tag{4.6}
\end{equation*}
$$

satisfies the boundary conditions (4.2)-(4.4).
We then easily see that the distribution defined in Ω_{p} by

$$
\begin{equation*}
\mathcal{G} \equiv C \delta\left(x_{2}-a_{2}\right) u_{a_{2}}\left(\frac{\ell_{1}\left(a_{2}\right)}{\ell_{1}\left(x_{2}\right)} x_{1}, x_{3}\right) \tag{4.7}
\end{equation*}
$$

where C is an arbitrary constant, is a solution of the problem (4.1)-(4.4) in the sense of distributions.

But, as \mathfrak{C} does not belong to
$D\left(A_{p}\right)=\left\{v \in L^{2}\left(\Omega_{p}\right) ; \quad \frac{\partial^{2} v}{\partial x_{1}^{2}}-\frac{\partial^{2} v}{\partial x_{3}^{2}} \in L^{2}\left(\Omega_{p}\right)\right.$,
v satısfying the boundary conditions (4.2)-(4.4)\}
\mathcal{G} is not an eigenfunction. We shall replace δ by a sequence of smooth functions tending to δ in order to prove that the corresponding $\mu=\omega^{2}$ is a point of $\sigma_{\text {ess }}\left(A_{p}\right)$.

4.1. Construction of a Weyl sequence

Let $\psi \in \mathscr{D}(\mathbb{R})$ and c be respectively such that

$$
\int_{\mathbb{R}} \psi(\xi) d \xi=1, \quad c=\int_{\mathbb{R}} \psi^{2}(\xi) d \xi
$$

and let us define the sequence

$$
\begin{equation*}
\psi_{k}(\xi) \equiv \psi(k \xi), \quad k=1,2, \ldots \tag{4.8}
\end{equation*}
$$

M^{2} AN Modélısatıon mathématıque et Analyse numérique Mathematical Modelling and Numerical Analysis
which enjoys the properties

$$
\left\{\begin{array}{l}
k \psi_{k} \rightarrow \delta \quad \text { as } \quad k \rightarrow \infty \quad \text { in } \mathscr{D}^{\prime}(\mathbb{R}) \tag{4.9}\\
\int_{\mathbb{R}} \psi_{k}^{2}(\xi) d \xi=\frac{c}{k} \\
\text { Supp. } \psi_{k} \subset[-1 / k, 1 / k]
\end{array}\right.
$$

Then, in Ω_{p}, we define the sequence $w_{k}\left(x_{1}, x_{2}, x_{3}\right)$ by

$$
\begin{equation*}
w_{k}(x)=\frac{k^{1 / 2} \psi_{k}\left(x_{2}-a_{2}\right)}{\sqrt{c}\left\|u_{a_{2}}\right\|_{L^{2}\left(\left[-\ell_{1}\left(a_{2}\right), 0\right] \times[0,1]\right)}} u_{a_{2}}\left(\frac{\ell_{1}\left(a_{2}\right) x_{1}}{\ell_{1}\left(x_{2}\right)}, x_{3}\right) . \tag{4.10}
\end{equation*}
$$

Now, we have still to prove that the sequence defined by (4.10) satisfies the hypotheses of the Weyl's theorem of characterization of the essential spectrum, namely:

$$
\begin{gather*}
\left\|w_{k}\right\|_{L^{2}\left(\Omega_{p}\right)} \rightarrow 1 \text { as } k \rightarrow+\infty \tag{4.11}\\
w_{k} \rightarrow 0 \text { in } L^{2}\left(\Omega_{p}\right) \text { weakly } \tag{4.12}\\
\left\|\left(A_{p}-\omega^{2} I\right) w_{k}\right\|_{L^{2}\left(\Omega_{p}\right)} \rightarrow 0 \text { as } k \rightarrow+\infty \tag{4.13}
\end{gather*}
$$

This is easily checked from (4.10).
Moreover, we have :

Proposition 4.1 : Let us denote by \mathscr{E} the set defined by
$\mathscr{E} \equiv\left\{\omega^{2} \in \mathbb{R}^{+} ; \omega^{2}\right.$ is an eigenvalue of the problem (4.1)-(4.4) in a sheet $\}$, and by $\overline{\mathscr{E}}$ its closure then, we have

$$
\begin{equation*}
\overline{\mathscr{E}}=\sigma_{\mathrm{ess}}\left(A_{p}\right) \tag{4.14}
\end{equation*}
$$

Proof: From the previous results, if $\omega^{2} \in \mathscr{E}$ then ω^{2} is a point of $\sigma_{\text {ess }}\left(A_{p}\right)$, consequently

$$
\mathscr{E} \subset \sigma_{\mathrm{ess}}\left(A_{p}\right) \Rightarrow \overline{\mathscr{E}} \subset \sigma_{\mathrm{ess}}\left(A_{p}\right)
$$

Conversely, we have

$$
\overline{\mathscr{E}} \supset \sigma_{\text {ess }}\left(A_{p}\right)
$$

Indeed, it is easily proved, by integrating in x_{2} that, if $\omega^{2} \notin \overline{\mathscr{E}}$, then ω^{2} belongs to the resolvent set $\rho\left(A_{p}\right)$.

Remark 4.2: Hypothesis (4.5) is not essential, we obtain Proposition 4.1 in the general case, where $x_{1}=-\ell\left(x_{2}, x_{3}\right)$, by using the theory of perturbation of the boundary (see [3], Sect. V.5).

5. SPECTRAL STUDY OF THE COUPLED PROBLEM WHEN $\omega^{\mathbf{2}}$ SATISFIES 2)

We consider now the porous medium Ω_{p} in contact with the air contained in a bounded domain Ω_{f} of \mathbb{R}^{3}. We show that if ω^{2} is an eigenvalue of the problem in a sheet, then ω^{2} belongs to the $\sigma_{\text {ess }}(A)$, where A denotes the operator associated with the coupled problem in Ω. To this end, as in the preceding section, we construct a Weyl sequence.

5.1. Construction of a Weyl sequence $\boldsymbol{v}_{\boldsymbol{k}}$

The sequence v_{k} is obtained by means of its restrictions to Ω_{p} and Ω_{f}.
Construction of v_{k} in Ω_{p} : We search for $v_{k \mid \Omega_{p}}$ of the form

$$
\begin{equation*}
v_{k \mid \Omega_{p}}=w_{k}\left(x_{1}, x_{2}, x_{3}\right)+\hat{w}_{k}\left(x_{2}, x_{3}\right) \tag{5.1}
\end{equation*}
$$

where w_{k} is the sequence defined in (4.10) and \hat{w}_{k} a function to be defined later, such that $\llbracket v_{k} \mathbb{\rrbracket}=0$ on Γ.

Construction of v_{k} in Ω_{f} : We take, as restriction to $\Omega_{f}, v_{k \mid \Omega_{f}}$ solution of the Neumann problem in Ω_{f} :

$$
\begin{gather*}
\left(-\Delta-\omega^{2} I\right) v_{k}=0 \quad \text { in } \quad \Omega_{f} \tag{5.2}\\
\frac{\partial v_{k}}{\partial n}=0 \quad \text { on } \quad \partial \Omega_{f} \backslash \Gamma \tag{5.3}\\
\frac{\partial v_{k}}{\partial x_{1}}=\frac{\partial w_{k}}{\partial x_{1}}\left(0, x_{2}, x_{3}\right) \text { on } \Gamma \tag{5.4}
\end{gather*}
$$

which has a unique solution when ω^{2} is not an eigenvalue of (5.2)-(5.4), that we shall suppose in the sequel. Then the trace of $v_{k \mid \Omega_{f}}$ is well defined and we take

$$
\begin{equation*}
\hat{w}_{k}\left(x_{2}, x_{3}\right)=v_{k \mid \Omega_{f}}\left(0, x_{2}, x_{3}\right) \tag{5.5}
\end{equation*}
$$

Consequently the sequence v_{k} is well determined and we immediately verify that $v_{k} \in D(A)$.

We have still to prove that v_{k} is a Weyl sequence, that is to say that v_{k}, defined by its restrictions $v_{k \mid \Omega_{f}}$ and $v_{k \mid \Omega_{p}}$ (respectively defined by (5.1), (5.2)-(5.4) and (5.5)) satisfies

$$
\begin{gather*}
\left\|v_{k}\right\|_{L^{2}(\Omega)} \rightarrow 1 \text { as } k \rightarrow+\infty \tag{5.6}\\
v_{k} \rightarrow 0 \text { in } L^{2}(\Omega) \text { weakly } \tag{5.7}\\
\left\|\left(A-\omega^{2} I\right) v_{k}\right\|_{L^{2}(\Omega)} \rightarrow 0 \text { as } k \rightarrow+\infty \tag{5.8}
\end{gather*}
$$

Since we have

$$
\begin{align*}
\left\|v_{k}\right\|_{L^{2}(\Omega)}^{2}=\left\|w_{k}\right\|_{L_{p}^{2}\left(\Omega_{p}\right)}^{2}+\left\|v_{k \mid \Omega_{f}}\right\|_{L^{2}\left(\Omega_{f}\right)}^{2}+\left\|\hat{w}_{k}\right\|_{L^{2}\left(\Omega_{p}\right)}^{2} & + \\
& +2\left(w_{k}, \hat{w}_{k}\right)_{L^{2}\left(\Omega_{p}\right)} \tag{5.9}
\end{align*}
$$

and as w_{k} is yet a Weyl sequence in Ω_{p}, (5.6) and (5.7) immediately follows from the following lemma:

LEMMA 5.1: Let be $v_{k \mid \Omega_{f}}$ and \hat{w}_{k} the sequences defined respectively by (5.2)-(5.4) and (5.5), then we have

$$
\begin{align*}
\left\|v_{k \mid \Omega_{f}}\right\|_{L^{2}\left(\Omega_{f}\right)} & \rightarrow 0 \quad \text { as } \tag{5.10}\\
\left\|\hat{w}_{k}\right\|_{L^{2}\left(\Omega_{p}\right)} & \rightarrow 0 \tag{5.11}
\end{align*} \text { as } \quad k \rightarrow+\infty .
$$

Proof : From classical estimates [6], we have, for $0<\delta<1$

$$
\begin{equation*}
\left\|v_{k \mid \Omega_{f}}\right\|_{L^{2}\left(\Omega_{f}\right)} \leqslant\left\|v_{k \mid \Omega_{f}}\right\|_{H^{\delta+1 / 2}\left(\Omega_{f}\right)} \leqslant C\left\|\frac{\partial w_{k}}{\partial x_{1}}\right\|_{H^{-1+\delta}(\Gamma)} \tag{5.12}
\end{equation*}
$$

consequently, the proof of (5.10) reduces to prove that

$$
\begin{equation*}
\frac{\partial w_{k}}{\partial x_{1}} \rightarrow 0 \quad \text { in } L^{2}(\Gamma) \text { weakly }\left(\Leftrightarrow \text { in } H^{-1+\delta}(\Gamma) \text { strongly }\right) . \tag{5.13}
\end{equation*}
$$

Now, from the construction of the w_{k}, we easily show that

$$
\int_{\Gamma}\left(\frac{\partial w_{k}}{\partial x_{1}}\right)^{2} d x_{1} d x_{2}
$$

is bounded independently of k; then we have still to prove that

$$
\int_{\Gamma} \frac{\partial w_{k}}{\partial x_{1}} \varphi d x_{2} d x_{3} \rightarrow 0 \quad \forall \varphi \in \mathscr{D}(\Gamma)
$$

that is easily obtained from the properties of the $\psi_{k}(c f$. (4.10)). vol. $26, n^{\circ} 6,1992$

As for (5.11), by using the property of continuity of the traces from $H^{1 / 2+\delta}\left(\Omega_{f}\right)$ into $H^{\delta}(\Gamma)$ and taking account of (5.12), we have

$$
\begin{aligned}
& \left\|\hat{w}_{k}\right\|_{L^{2}\left(\Omega_{p}\right)} \leqslant C_{1}\left\|\hat{w}_{k}\right\|_{L^{2}(\Gamma)}=C_{1}\left\|v_{k \mid \Omega_{f}}\left(0, x_{2}, x_{3}\right)\right\|_{L^{2}(\Gamma)} \leqslant \\
& \quad \leqslant C_{2}\left\|v_{k \mid \Omega_{f}}\left(0, x_{2}, x_{3}\right)\right\|_{H^{\delta}(\Gamma)} \leqslant C\left\|v_{k}\left(\Omega_{f}\right)\right\|_{H^{\delta+1 / 2}\left(\Omega_{f}\right)} \rightarrow 0 \quad \text { as } \quad k \rightarrow+\infty
\end{aligned}
$$

and the Lemma is proved.
Now, from the definition of the operator A, we have

$$
\left(A-\omega^{2} I\right) v_{k}= \begin{cases}0 & \text { in } \Omega_{f} \\ -\frac{\partial^{2} w_{k}}{\partial x_{1}^{2}}-\frac{\partial^{2} w_{k}}{\partial x_{3}^{2}}-\omega^{2} w_{k}-\frac{\partial^{2} \hat{w}_{k}}{\partial x_{3}^{2}}-\omega^{2} \hat{w}_{k} & \text { in } \Omega_{p}\end{cases}
$$

and w_{k} is such that

$$
\left\|-\frac{\partial^{2} w_{k}}{\partial x_{1}^{2}}-\frac{\partial^{2} w_{k}}{\partial x_{3}^{2}}-\omega^{2} w_{k}\right\|_{L^{2}\left(\Omega_{p}\right)} \rightarrow 0 \quad \text { as } \quad k \rightarrow+\infty
$$

then, taking into account (5.11), (5.8) will be proved if we show that \hat{w}_{k}, defined by (5.5), is such that

$$
\begin{equation*}
\left\|\frac{\partial^{2} \hat{w}_{k}}{\partial x_{3}^{2}}\right\|_{L^{2}(\Gamma)} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \tag{5.14}
\end{equation*}
$$

As w_{k} is smooth in x_{3}, it is easily seen that $\partial^{2} v_{k} / \partial x_{3}^{2}$ satisfies, in Ω_{f}, the equation (5.2) and the boundary condition obtained by differenciating (5.4) with respect to x_{3} twice, but does not satisfy (5.3) except for particular geometries. Let us suppose that Ω_{f} satisfies the following property :
(P) : Ω_{f} is such that if v_{k} satisfies (5.2), (5.3) and (5.4), then $\partial^{2} v_{k} / \partial x_{3}^{2}$ satisfies them too.

Then, we have

$$
\frac{\partial^{2} v_{k}}{\partial x_{3}^{2}} \rightarrow 0 \quad \text { in } \quad H^{\delta+1 / 2}\left(\Omega_{f}\right) \text { strongly for } 0<\delta<1
$$

which is analogous to (5.12).

Now, we have

$$
\begin{aligned}
\left\|\frac{\partial^{2} \hat{w}_{k}}{\partial x_{3}^{2}}\right\|_{L^{2}\left(\Omega_{p}\right)} \leqslant C_{1}\left\|\frac{\partial^{2} \hat{w}_{k}}{\partial x_{3}^{2}}\right\|_{L^{2}(\Gamma)}=C_{1}\left\|\frac{\partial^{2} v_{k}}{\partial x_{3}^{2}}\right\|_{L^{2}(\Gamma)} & \leqslant \\
& \leqslant C_{2}\left\|\frac{\partial^{2} v_{k}}{\partial x_{3}^{2}}\left(0, x_{2}, x_{3}\right)\right\|_{H^{\delta}(\Gamma)} \leqslant C\left\|\frac{\partial^{2} v_{k} \mid \Omega_{f}}{\partial x_{3}^{2}}\right\|_{H^{\delta+1 / 2}\left(\Omega_{f}\right)}
\end{aligned}
$$

and consequently (5.14).
Exemples of such a geometry are cylinders with generators parallel to x_{3} and periodicity conditions with respect to x_{3}.

Then we have
THEOREM 5.2: For any domain Ω_{f} the geometry of which satisfies the hypothesis (P), the points $\lambda=\omega^{2}$ which are eigenvalues of the problem (4.1)-(4.4) in a sheet of the plane $x_{2}=$ Const. but which are not eigenvalues of the Neumann problem in Ω_{f}, belong to the essential spectrum of the coupled problem in Ω.

Remark 5.3 : Computations in cylindrical coordinates (r, θ, z) allow us to consider other geometries. In particular, domains with symmetry of revolution around of the axis z as in figure 5.1.

Figure 5.1.

More exactly, in the particular case of figure 5.1 we proved [7]:
THEOREM 5.4: When the problem is periodic with respect to θ and the function ℓ depends only on z.
a) If $\lambda=\omega^{2}$ is a point of the resolvent set $\rho\left(A_{p}(z)\right)$ for any $z \in[0,1]$, then $\lambda=\omega^{2}$ is either eigenvalue of finite multiplicity or point of the resolvent set.
b) If $\lambda=\omega^{2}$ ıs such that there exists $a_{2} \in[0,1]$ for which $\lambda=\omega^{2}$ is an eigenvalue of the operator $A_{p}\left(a_{2}\right)$ and is not an eigenvalue of the problem in Ω_{f}, then $\lambda=\omega^{2}$ belongs to the essential spectrum of the coupled problem.

REFERENCES

[1] F. Fleury and E. Sanchez-Palencia, Asymptotic and spectral properties of the acoustic vibrattons of body perforated by narrow channels, Bull. Sc1. Math, $2^{\text {sd }}$ serie, 110 (1986) pp. 149-176.
[2] A. Benkaddour, Un opérateur à résolvante non compacte pour un problème couplé de vıbratıons acoustıques, C.R. Acad. Scı., Parıs, t. 309, séne I (1989) pp. 265-268.
[3] J. Sanchez-Hubert and E. Sanchez-Palencia, Vibration and coupling of continuous systems Asymptotic methods, Springer-Verlag (1989).
[4] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, t. 1, Dunod, Pans (1967).
[5] J. L. Lions, Équatıons différentielles opératıonnelles, Sprınger (1965).
[6] P. Grisvard, Elliptic problems in non smooth domains, Monographs Stud. Math., 24, Pitman, London (1985).
[7] A. Benkaddour, Étude du spectre d'opérateurs dans des problèmes de couplage compact-non compact, Thèse de l'Unıversité P. et M. Curie (1990).
[8] E. Sanchez-Palencia, Non homogeneous media and vibration theory, Lecture Notes in Physics, Berlin (1980).
[9] T. Lévy, Propagation of waves in a fluid saturated porous elastic solid, Intern. J. Eng. Scı., 17 (1979) pp. 1005-1014.

[^0]: M^{2} AN Modélısatıon mathématıque et Analyse numérique 0764-583X/92/06/659/14/\$ 340
 Mathematical Modelling and Numencal Analysis (C) AFCET Gauther-Villars

