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[X] MATHEMATICALMOOEUJHGAHDHUMERICALAHALYSIS
MOMUSATIOH MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 26, n° 3, 1992, p. 447 à 468)

ON A CLASS OF NONLOCAL NONLINEAR ELLIPTIC PROBLEMS (*)

M. CHIPOT C1) and J.-F. RODRIGUES (2)

Commumcated by P G CIARLET

Abstract — In this paper we give a direct approach to the solvabtlity of a class of nonlocal
problems which admit a formulation in terms of quasi-variatwnal inequalities We are motivated
by nonhnear elhptic boundary value problems in which certain coefficients depend, in a rather
gênerai way, on the solution itselfthrough global quantifies like the total mass, the total flux or the
total energy We illustrate the existence results with several applications, including an implicit
Signorini problemfor steady diffusion ofbiological populations and a class of operator équations
in nonhnear méchantes We also discuss the non-uniqueness of the solutions

Résumé — Ce papier présente une approche directe de résolution de problèmes non locaux de
type inéquations quasi variationnelles Notre motivation est la résolution de problèmes elliptiques
non linéaires dont les coefficients dépendent de la solution au travers de quantités telles que la
masse, le flux ou Vénergie totale Nous illustrons nos résultats d'existence par différentes
applications dont un problème de Signorini implicite relatif à la diffusion de population en
biologie et une classe de problèmes en mécanique non linéaire Nous nous intéressons également
aux questions d'unicité

1. A MODEL PROBLEM

Let H be a bounded open set of Un with a Lipschitz boundary
7". In the physical situation we have in mind O, is, for instance, a pervious
container of bacterias. Let u be the density of bacterias within this container
and let ƒ dénote the supply of beings by external sources. Let us assume that
the velocity of dispersion of this population is given by

- (ƒ / ) (1.1)
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448 M. CHIPOT, J.-F. RODRIGUES

i.e., is proportional to the gradient of the density with a positive factor
a depending on the entire population. Moreover, assume that death in this
species is proportional to u by a factor A > 0. A balance of population in
space gives lise to the équation (see [GM]) :

- d i v \a[\ W)VM \ = f - AU in O . (1.2)
•(ƒ.•

Moreover we assume that sample of bacterias is driven out of
O by the total population through the factor a and by a dominant group
living in some subdomain O' c 12 through a factor y. If we express this in
terms of flux we are lead, for instance, to an équation of the type :

v . n = a u\ yl \ u) on T, (1.3)

where n dénotes the outward normal to F. Then, our problem bec ome s to
find u such that

•(ƒ.- AM + A u — ƒ in 12

(1.4)

bnu + y ( I M ) = 0 on r .

For convenience of notations we have dropped the Lebesgue measures in
the intégrais and denoted by bnu = vw.n the normal derivative.

Our aim in this note is to show that this kind of problems is much easier to
handle than the usual quasilinear équations. The difficulty in the local
quasilinear case is due to the necessity of using a fixed point theorem in an
infinité dimensional space like, for instance, the Schau der fixed point
theorem (see [LL], [L], for instance). On the contrary, nonlocal problems
such as (1.4) can be easily solved using Brouwer fixed point theorem.

To see that (1.4) requires, essentially, no more that so solve a nonlinear
équation in a finite dimensional space let us consider it in the particular case
when fl ' = fl. More precisely, we assume that the factor y also dépends on
the total population. Integrating the first équation over Q we get, using
Green's formula :

ƒ = : _ « ( u\ A M + A M = - 0 ( u\ \ 3flw + A u.
Jn \Jn I Jn Jn \Jn I Jr Jn

S o, by the second équation of (1.4), with 12' = fl, if ]ƒ"! dénotes the
measure of F, we obtain
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NONLOCAL NONLINEAR ELLJPTIC PROBLEMS 449

and thus the total population

er =

satisfies the équation

\T\ a(cT)y(a) + Ao- = \ ƒ . (1.5)
Jn

Conversely, let o- be a real solution of (1.5), and dénote by u = u{a) the
solution of

— a (o-) Au + A M = / in/2 n 6Ï
dnu + y (o-) = 0 o n f

(we assume hère, for instance, a > 0 and ƒ e L 2(/2 ), so that the solution to
this Neumann problem exists in a weak sense, as it is well-known). An easy

computation yields a = \ u, so that u is a solution to (1.4), with

f!' = O. In this case this shows that (1.4) reduces to (1.5), which is an
équation in IR ! We can summarize our analysis in the following :

PROPOSITION 1 : Let a :> 0, y s= 0 two continuons functions from
R into U+ and let f e L 2(f2 ). Then ue H l(H ) is a weak solution to (1.4),
with O' = 12, iff u is a weak solution to (1.6) and er satisfies (1.5). In
particular, if

Inf { | r | a ( r ) r ( T ) + A r } < [ ƒ (1.7)

then (1.4), with O' = /2, has at least one solution,

Proof : The first part of the proposition is clear from our previous
analysis. It remains to show the existence of a solution. The function
<f>(r) = \F\ a(r) y(r) + Ar tends to + oo when r -• + oo. Thus by the
assumption (1.7) and the intermediate values theorem it is immédiate that
the équation (1.5) has at least one root <r and the result follows.

Remark 1 : It should be noted that the existence of a solution dépends on
the data and, in particular on ƒ (see (L7)). If one assumes 0 -< a ^a(cr) =s
P Vo-, and y uniformly bounded, then it is clear that (1.7) is satisfied
independently of ƒ and then existence always holds. On the other hand, if
y grows too fast at — oo, it is clear that (L5), and thus also (1.4), may fail to
have any solution.

vol. 26, n° 3, 1992



450 M. CHIPOT, J.-F. RODRIGUES

Remark 2 : The physical situation we have considered requires ƒ s= 0.
Then a natural assumption is, of course, y (0) = 0 (no population implies no
flux...) ; then one has

\T\ a(0) r (0 ) + A0 = 0=£ ƒ ^ \T\ a(a) y(<r) + \a ,
Jn

for o- large enough and existence holds in this case.

Remark 3 : It is clear that our data can be selected such that

\T\ a(a)y(a) + Xcr = \ ƒ ,
J n

for a in some interval I. This leads to an uncountable number of solutions
for (1.4). We shall return to this question in Section 4.

The paper is organized as follows. First, in the next section, we show that
a large class of problems, including (1.4) as an example, can be solved in a
gênerai abstract framework by direct methods of nonlinear analysis. Then in
Section 3 we give some applications in nonlinear mechanics, including an
obstacle problem for the extensible plate. This section can be dropped in a
first reading. In Section 4 we corne back to our original problem. More
precisely, we solve an implicit Signorini problem for steady diffusion of
populations extending (1.4). Finally we shall comment on the necessity of
our assumptions and on non-uniqueness results.

2. ABSTRACT EXISTENCE RESULTS

Let y be a reflexive Banach space with dual V*. For a e Um consider
A (cr) a family of operators from V into V*, f(<r) a family of éléments in
V* and K(cr) a family of nonempty closed convex sets in V. Dénote by
( , > the duality bracket between V* and V, || ||, || || * the norms in
V and V*, respectively. If /x is a mapping from V into lRm, we consider
quasi-variational inequalities of the type (see [L], [BC], [BL], [KS], [C], [R]
for notation and définitions) :

u E K(/x(u)) : (A(JJ,(U))U, v - u) =* </(/*(w)), v - u) ,
) ) . (2.1)

Although this type of implicit problems may be set in a more gênerai
framework for which abstract existence results are available (see [M], [BC],
for instance), our aim in this section is to study a special class of data for
which a direct and eventually simpler approach can be developped, based
only on the Brouwer fixed point theorem.
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NONLOCAL NONLINEAR ELLIPTIC PROBLEMS 451

On the operator A, we assume that, for each a G IRm :

A (o- ) is a strictly monotone, bounded,
hemicontinuous operator from V into V * (2.2)

We recall that by strict monotonicity we mean :

(A (er) v - A (a) w, v - w) > 0 , Vu, w e V , v ^ w .

Moreover, we assume the following continuity properties on the mappings
a -• A (er), a -» K(GT) : for each er e IRm and for séquences er' -> er,

Vi? e K(o-), 3 tv e K(cr'):

tV->«> in V and A (er') i v _> A (er) i; in V* (2.3)

V subsequence a' -* a , va. G K(cr') :

üff( _• Ü in F-weak => v e K (er ) . (2.4)

The two above conditions on er ->K(er) define the well-known Mosco's
convergence for convex sets. On ƒ and on yu, we assume, respectively,

ƒ is a continuous mapping from IR m into V *

and 3Cf => 0 : || ƒ (er) ||+ ̂  C r , Ver G IRm . (2.5)

lx is a continuous mapping from V-weak into R m . (2.6)

In the special case of our model problem (1.4) we have m = 2 and

lx (u) = M M, w 1. We shall use also the following uniform coercive-
\Jn Jn' /

ness assumption :
3i;0 G n K(cr) such that VM > 0 , 3R(M) > 0 :

> <A(cr)u, I ? - I ; 0 > >M| | i? — «oII > V c r e R m • (2*7)

Under the above assumptions we can prove the following result :

THEOREM 1 : Assume that (2.2)-(2.6) hold. Then there exists at least one
solution to (2.1) ifone of the following conditions is satisfied : i) (2.7) holds ;
or ii) U K(er) is a bounded set of V.

Proof : For each er G IRm, by the assumptions made, we know there exists
a unique solution ua of the following variational inequality (see [L]) :

uŒeK(a): (A (a) ua, v - ua) =* <ƒ {a), v - ua) VveK(<r). (2.8)

vol. 26, n° 3, 1992



452 M. CHIPOT, J.-F. RODRIGUES

Step 1 : ua is bounded independently of a.
Indeed, in case ii) there is nothing to prove. In case i) we take

v = v0 in (2.8) and we find

(A (o-)ua, ua - v0) ^ <ƒ (cr), ua - v0)

and from (2.5) and (2.7) we conclude \\ua - t?0|| ^

Step 2 : The map a -• ua is continuous from Km into V-weak.

We have to show that a' -> <x => ua> -• uŒ in V-weak and, due to step 1
and the weak compactness of the closed balls in V, it is enough to show that
ua is the only limit point of ua<. For that, let us assume for some
subsequence, still denoted by <r\ we have uŒ> -> u in V-weak.

From (2.8) and the monotonicity of A (<r') one has :

owing to (2.4) and to (2.3), we can let a' -• cr in (2.9) and we obtain

(A (a) v,v-u)^ <ƒ (cr), i? - w> , Vi? e K(cr) ;

since « e K(o-), by (2.4), and using Minty's lemma and the uniqueness of a
solution to (2.8) we conclude that u = uŒ, pro ving the required continuity
property.

Step 3 : The map a -• IJL (ua) has a fixed point.
First due to step 2 and to (2.6), this map is continuous from IRm into itself.

Moreover, Um is carried out by cr -+ua into some compact set of V-weak,
which is carried out into some compact set of Um, Le. into some closed bail
BR a Rm. Then, clearly, cr —> IA {ua) is a continuous map from BR into itself.
lts re suit s from the Brouwer fixed point theorem that there exists a solution
cr* to cr = M (Wcr), to which the corresponding solution u = u^ of (2.8)
solves the quasi-variational inequality (2.1).

In the case of strong ellipticity it is possible to relax slightly the
assumption (2.6) to

IA is a continuous mapping from V into R m . (2.10)

THEOREM 2 : Assume, in addition to (2.2)-(2.5) and (2.10), that the
following conditions hold

3/o > 1 , 3v>0: (A(o-)v - A{a)w, v - w) ^
~*i>\\v-w\\p Vv,weV, Vo-e[Rm. (2.11)
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Bvöe n K(o-) suchthat \\A (a) vo\\^ Cö Vo- e Um . (2.12)
o- e Um

Then there exists at least one solution to (2.1).

Proof : For v0 satisfying (2.12) we have

(A(a)v, v - v0) =

= (A (a) v - A (a) v0, v - v0) + (A (a ) v0, v - v0)

s* v \v-x>^y - ||A(<r)i?0||^ ||t7 — «70j| ^ v | | ü - t ? 0 | | p -C0\\v -vo\\ ,

so that (2.7) holds. Then the arguments developed in the proof of the
previous theorem apply here with the additional requirement that the
convergence ua> -• uŒ, as a' -> a, in step 2, holds not only for the weak
topology but also for the strong one. For that, we take in (2.8), for
er = er', va, 6 K(cr') such that, using (2.3), va> -> ua in V, and we find

(A (<r>) va>, t v - U(T,) - <ƒ (er'), tV - O >

Since A {a') v^^A (a) ua in V*, by (2.3), and va, - ua, ^ 0 in V-weak,
the left hand term vanishes as cr'->cr, and thus we get the strong
convergence from

IWa- ~Ua'\\ ^ || «o- - ô-'H + ll'V-Mo-'H "• ° aS °" ' "• °" *

It is useful to consider the particular case where K(er)= K, Vo- E Rm, i.e.
K is a fixed nonempty closed convex set of V. We shall also consider the
following sufficient condition for the continuity of a -> A (a) in assump-
tion (2.3) to be verified :

Vi> e K the map o- -> A (o- ) v is continuous from IRm into V * . (2.13)

As special cases of Theorems 1 and 2, respectively, we can immediately
establish sufficient conditions for the solvability of the following variational
inequality.

ueK: <A(/A(M))M, V - U) === < / ( M ( M ) ) , ^ - M> VU e K . (2.14)

COROLLARY 1 : Assume that (2.2), (2.5), (2.6) and (2.13) AoW. 77zerc if
i) K is a bounded nonempty closed convex set of V ; or

ü)

3voe K : ||v - t;0|| -> + oo =̂> <A (er) u, i? - t?0)/||t? - i?0|| -* + °° »

uniformly in er e Rm, there exists at least one solution to the problem (2.14).

vol. 26, n° 3, 1992



454 M. CHIPOT, L-F. RODRIGUES

In the case of strong coerciveness we also have :

COROLLARY 2 : Assume that (2.2), (2.5), (2.10), (2.11) and (2.13) hold.
Then ifK is a closed convex set ofVsuch that 3v0 e K : \\A {cr) vo\\^ ^ Co ,
Ver G IRm, there exists at least one solution to the problem (2.14).

Remark 4 : We have made boundeness assumptions ail along this section.
Of course they can be relaxed in some cases at the expense of suitable
growth conditions that we have not explored hère.

Remark 5 : In (2.6) and in (2.10) we just need to define jm and to require
the respective continuity properties on U K(cr), which, of course, may

<rf=nm

be a proper convex subset of V,

3. APPLICATIONS TO BOUNDARY VALUE PROBLEMS

3.1. Let / ] b e a bounded open set of Un. For p > 1 and k E JV. Let us
dénote by WKp{{2) the usual Sobolev space of functions in Lp(f2) whose
derivatives Da of all orders a, 0 «= | a | as ifc, are in LP(O), see [A], We

( \ up
£ \Dav\p\ where | . | is the usual

Lp norm. If K is a nonempty closed convex set in Wk>p(I2 ), let
V be the closed subspace in WkyP(f2) spanned by K - K =
{v - vf : v, v' e K } . We assume that K <= V.

If N dénotes the number of dérivations in x of order 0 as | a | «s &, we
assume

aa = aa (x, cr, f ) : / 2 x M'" xUN ^R are Carathéodory functions , (3.1)

i.e., measurable in x for each {a, g) and, for a.e. x, continuous in
(a-, £), such that, for each a :

K ( x , a, f ) | ^ C ( c r ) l É l ' - ' + cOc), VcrelRr t, (3.2)

for a.e. x e / 2 , Vf G IR*, for some locally bounded function C (a- ) === 0 and
some function c E Lp\f2), p' = pl {p - 1) is the conjugate exponent of

For M, i? e WKp{{2) and cr E RB , we define A (cr) by

(A(<T)U,V)= ^ [ fla(jc, a, Du)Davdx, (3.3)

where DM = {M, VM, ...,Dau; \a\ ^ £ } . The assumption (3.2) implies
that <2a (M, cr, Du ) e Lp {O ) for each a , | a \ ^ k, and A (cr ) is well defined
from V into V*, dual of V endowed with the W^/:'/7(/2)-topology.

M2 AN Modélisation mathématique et Analyse numérique
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NONLOCAL NONLINEAR ELLIPTIC PROBLEMS 455

For a given map //. : K -• lRm, we can consider the following form of
(2.14):

f
usK: £ aa{x, fx {u\ Du) D a{v - u) & 0 , VM e K (3.4)

I « | e * J /2

to which we can apply Corollary 1 and 2.

THEOREM 3 : Assume that the coefficients aa verify (3.1), (3.2) and lead to
a strictly monotone operator A {er) through (3.3). Then, if one of the
following conditions below holds, there exists at least one solution to (3.4) :

i) 3t?0 e K : (A ( e r ) v, v — Uo)/II17 — ̂ oll^ -* + °°> uniformly in <r e Mm

when \\v -vQ\\k -^ + oo, and (2.6) holds ; or (3.5)

(ii) K ^ 0 , (2.10) /ïoto and 3<7 > 1, 3v > 0

V I ? , W Ê ^ , V<re[Rm. (3.6)

Proof : It is sufficient to observe that (3.1), (3.2) and the coerciveness
assumptions imply that A{a) is an operator of the Leray-Lions type (see
DLL] or [L], p. 182) verifying the condition (2.13).

Remark 6 : Let K = WQ'P{Ü ) and assume 3r/ > 0 :

X <*a(x><r>Ç)€a**l\Ç\p for | f I l a r g e . (3.7)
l « l =k

Then (3.5) holds provided 77 is sufficiently large, or meas{fl) is
sufficiently small, or the lower order terms are monotone, i.e., for a.e.
xe R, Va elRm and f j e ^ :

a, ^)-^(x, o-, )̂] [^-^]^0. (3.8)

In this case, Theorem 3 provides the solvability of the following Dirichlet
problem

£ ( - l ) M £ » « ( a a ( x , M ( w ) ,Du)) = 0 in 12 (3.9)
1*1 * k

Bk„1u = Q on T (3.10)

where Bk_1 u = [u, bnu, ..., 9^-1} and àn dénotes the normal derivative.
Of course, the rigorous meaning of (3.10) requires some smoothness of

r.
vol. 26, n° 3, 1992



456 M. CHIPOT, J.-F. RODRIGUES

Remark 7 : As examples of JJL(U) — (/^[w], ..., /j,m[u]) verifying (2.6)
we can choose several combinations of the following functionals

for some f} G V * and for 0y : R -> R any continuous function.
For instance, we may consider :

<ƒ«•.«>= I J^faD
au

where £1' is any measurable subset of Ü, and fa are functions in

where F' is any measurable subset of the sufficiently smooth boundary
F of /2, and ^^ e Lq(F') where <? s= 1 is the conjugate exponent of the
respective Lb(F) where D1* u lies by the trace and Sobolev imbeddings
theorems ;

</o «) = £ ca £>
 a M(X0) for some fixed x0 G D ;

for some ca e R, provided /: > f + «/p, by the Rellich-Kondratchov compact
imbedding Wk>p^C2.

Remark 8 : Of course, the condition (2.6) implies (2.10). In addition to
the examples of the preceding remark, in order to give examples of
ix satisfying (2.10) we can consider functions of the type

A * [ M ] = <f>(Du) or M [ M ] =
JO' JF'

provided <f> and *// are continuous functions such that, combining the
compact imbeddings and trace theorems with the growth conditions of
<t> and if/, we have <f>{Du) e Ll(f2') and i//(Du) e Ll(F') for every
u G Wk'p(Q). For instance, we can consider continuous functions of the
« energy functional »

X f \Dau\"
1 - *
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NONLOCAL NONLINEAR ELLIPTIC PROBLEMS 457

3.2. Now we develop two special examples arising in nonlinear mechanics.
First let k = 1, p s= 2 and define for er = (cr^, cr2) e M2 :

(A(<r)u,v) = ct>x{ax) | \dlu\p-2dludlv +
Ja

+ <f>2(<r2) f \ u \ P ~ 2 u v - f ƒ « ( 3 . 1 1 )
Jn J n

for M, i? Ê W1)P(/3 ), ƒ e W~ lj p '(/2 ). Where we use the sommation conven-
tion on i = 1, ..., n, we dénote 9( = 3/8x( and we assume that the given
functions <i>p for y = 1, 2, are such that :

<£, : IR -• U+ are continuous and <̂  }{r) ^ Ï/; for V r e l R . (3.12)

Now let Fo be a subset of F. In order to cover several possibilities we
allow :

Case (D) : Fo = r (Dirichlet problem) ;
Case (N) : Po ~ 0 (Neumann problem) ;
Case (M) : F o ̂  0 and r a = T \ r o ̂  0 (Mixed problem).

In case (D) we set V = W^p(f2 ) , in case (N) V = W hp(f2 ), and in case
(M) we introducé

V= {v GWhp(Ü):v =OonF0}

and we assume \F0\ > 0, so that the Poincaré inequality \v\ =s=c | |Vu||

holds also in case (M). If we define /JL : V - • IR2, by

) ) ( 3 * 1 3 )

we have the following Corollary of Theorem 3.ii) :

PROPOSITION 2 : Let f e W~hp\n), p ^ 2 am/ (3.12)
^ 0 /« ca^5 (D) and (M) and ^2 ̂  0 'w case (N).

solution u e V to the nonlocal problem :

I I I I l I l™ l ^

f Jü

\u\p\ \u\p-2uv= fv, V i ? e V . ( 3 . 1 4 )

Proof : It is sufficient to remark that the condition (3.6) holds with
q = p and v = kp inf (Ï/1S V2) in case (N) and v = kpc

p vx, in cases (D) and

vol. 26, n° 3, 1992



458 M. CHIPOT, J.-F RODRIGUES

(M), where c > 0 is the constant in the respective Poincaré inequality and
kp > 0 is a constant depending only on p s= 2.

Remark 9 : This variational problem, which may be used to describe the
flow of a class of non-newtonian fluids with viscosities depending on the
total energy, corresponds formally to the Dirichlet, Neumann or Mixed
boundary value problem :

l j A \u\?-2u=f in H,

w = 0 on r0 and | àtu \p~2 btu nl = 0 on F{.

Remark 10 : Consider 4>}{T) — r4>J(a)d<r. Then any solution to
Jo

(3.14) corresponds to a stationary point of the functional

J(v)= lip<t>A j \ V V \ P \ + l/p<f>2l f \ v \ A - \ f v , v e V .

Of course, if <fcj are monotone nondecreasing functions then / is a convex
functional and the existence of a solution is guaranteed by convex analysis.
If, in addition, <f> j is increasing then the Dirichlet and the mixed problems
have a unique solution. If <f>2 is also increasing then the Neumann problem is
also uniquely solvabie.

3.3. Consider now the case of the plate operator with a nonlinearity of
nonlocal type, by introducing

(A(o-)u, v) = ^ O i ) AwAt? + <f>2(<r2) \ V w . V u = f(x9o-3)v,
J o J n J a

(3.15)

for M, v e H2(f2) = Wx\fl) and a = (a^ <T2, <T3) e IR3. Hère fl is a
bounded domain of R2.

Let if/ : /2 -• [— oo, + oo [ be a measurable function, representing an
obstacle below the plate, such that

K^ = {v G V : v ^ tff a.e. in H } ^ 0 (3.16)

where we allow two possibilities for the subspace V ŒH2(H) :

V = Hl{ft) (clamped plate ) (3.17)

V = H\n ) n Hl(O) (simply supported plate ) . (3.18)
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We recall that by the Sobolev imbedding theorem the functions of
H2(I2) are continuous in f2. Now, if D is any closed subset of
12, if supD u dénotes the supremum of M on D, we can define a continuous
map jjL : H2(f2 ) -• IR3 by setting

2, f | Vw |2, supDu\ .

J n

For the forcing term ƒ : i2 x R -> R, we assume ƒ = ƒ (x, r ) is a
Carathéodory function (measurable in x, VT, and continuous in r for a.e.
x) such that

3 / O E L 2 ( / 2 ) : |/(JC, r ) | * / 0 ( j c ) , a.e. x e / 2 , VT G R . (3.19)

With these définitions the problem (3.4) reads u e K^ :

J. / r .A l2\ r A A, x ^ / r . „ .2\ r „ ~,
<£i( | A M | Z J AW A(t? - u) H- 0 2 1 I^MI I Vw.V( t? — M )

f (s, supD u) (v - M) , Vt? G K , . (3.20)
fa

A solution M to this problem can be interpreted as the equilibrium
deflection of a nonlinear plate, which is forced to lie above an obstacle by
some force depending on the maximum deflection in some domain
D and is clamped at the edges (case (3.17)) or simply supported (case
(3.18)). In the case (3.18) we assume the boundary F of f2 is smooth, say of
class C *' \ or else fl is a convex domain. Then we recall that in both cases
i? -> | Ai? |2 is a norm in V equivalent to the one induced by || . ||2 2 (see
[R], for instance). As an immédiate conséquence of Theorem 3.ii) we have
the solvability of (3.20).

PROPOSITION 3 : Let the conditions (3.16), (3.17) or (3.18), (3.19) and
(3.12), with vx > 0 and v2 ^ 0, hold. Then there exists at last one solution to
(3.20).

Remark 11 : As in Remark 10, the associated energy functional, in the
case ƒ = ƒ(*), is now given by

( f | V t ; | 2 j - f v , v e K ^ ,

and similar observations can be made regarding the uniqueness of solutions.

Remark 12 : We can consider the case if/ = - oo, i.e., K^ = V, as covered
by Proposition 3. This corresponds formally to solve the équation

</>i[\ |Aw|2) A2w- 4>2\\ lV w |2 ) Aw = ƒ (x, supD u) in O
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with the boundary values

u — ànu = 0 on F ,

for the clamped plate (3.17), or with

u = AH = 0 on F ,

for the simply supported plate (3.18).

Remark 13 : The special case where <f> } = 1 and

4>2{T ) = a + r , r e I R , a > 0

has been proposed as a model for a class of a nonlinear extensible plates (see
[E]). In the one-dimensional case it arises also in the study of hinged
extensible beams. The corresponding dynamic problem s (without obstacle)
have been considered by several authors (see [M], [Y] for instance).

Remark 14 : We can also consider the obstacle problem for the mem-
brane, by letting in (3.20) <f>x = 0, V = HQ(S2 ) in (3.i6) and by assuming

and replacing the forcing term, for instance by
/ r

f = f

4. APPLICATION TO POPULATION DISPERSION WITH IMPLICIT CONSTRAINT

Let the notation be as in the introduction and consider again the model
équation (1.2), but now suppose that it has been observed that our species is
stable if its density of population is, at every point of the boimdary, greater
than s orne critical threshold depending on the total flux entering across the
entire boundary, Le.,

/ r \ / ( f \ ç \
u { x ) s= & [ x , - \ v . n = 4f JC, a \ \ u \ ànu = t//[u] (x)

\ Jr I \ \Ja I Jr I
for X E T , (4.1)

and the flux boundary condition of the type (1.3) holds only at points where
U :> ifs.

Instead of the boundary value problem (1.4) we are now led to the
following implicit Signorini type problem ;

- a ( u\ Au + \u = f in H (4.2)

u z * i f r [ u ] , d n u + y l \ u A 1 1 ) 3 = 0 , a n d (4.3)
\Jn' Jr I

{ u - i f , [ u ] } a w M + r / | M, | u\ 1 = 0 o n F . ( 4 . 4 )
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Here we assume A > 0, f2f a f2 and F' <= F are relatively open subsets
and a : IR -• 1R+ and y : IR2 -• [R are continuous functions such that, for
some constants <o, M :

0<: o> ^ a ( o - 1 ) ^ M , |y(o-2> °"3>| =sAf , Ver l t o-2, o-3 e IR . (4.5)

Letting V = H x(f2 ) with norm \\v\\ = \\ v \\ l 2, for each
er = (cru <T2, cr3, cr4) e IR4, we introducé the following monotone and
continuous operator A: V -> V*, given by

f f
o4 (er) u, vy = öf(crj) Vw . Vi? + A uv +

J/2 " Ji2
+ a(ax) y(a2, <r3) \ v , VM, I? e Hl(f2) . (4.6)

Jr

From (4.5) it is clear that (2.11) holds with p = 2 and v = min (o>, A ).
For ƒ e L2(f2) we set

<ƒ,!>> = f ƒÏ; , VveH\n).
J/2

The linear map IA given by

/ * ( « ) = ( [ «f f M, f «, f anw) (4.7)
\ J/2 J/2' Jr' Jr /

is not defined on the entire H1(f2), but only in its subspace

HA(f2) = {v eHl(f2):Av eL2(f2)} .
As it is well-known (see [BC], [M] or [R], for instance), when

F is a Lipschitz boundary, the normal derivative 9n : HA(f2 ) -* H~m(F) =
[Hm(F)Y is a linear operator satisfying, for some constant C > 0,

In the last argument of (4.7), we set dnu = (bnu, l ) r , where

<, > r dénotes the duality brackets between H~m(F) and Hm(F), and
Hm(F) dénotes the space of traces of Hl(O) functions.

Now let i// : F x R -* IR be a Carathéodory function such that the
mapping

T _> ̂  ( v T ) is continuous from IR into i/ m(F) . (4.9)
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Hence, for each cr = (o-1; cr2, a^ <x4), we can define the convex subset

K(o-) = K(<rl9 o-4) = {1; eHl(f2) : v (x) 2* & (x, a(<rx) cr4) a.e. x e T }

, . , (4.10)
and if we assume

3 h e H m ( r ) : h ^ i / f ( x , r ) , V r e R (4.11)

it is clear that (2.12) holds for instance, by letting v0 be the harmonie
function in Q with trace on F equal to h.

For any a G IR4 and ƒ G L2(f2), there exists a unique wa which solves
(2.8) with A(cr) and K(cr) given by (4.6) and (4.10), respectively. It is
immédiate that ua is bounded in V = H l(f2 ), independently of a- G IR4, and
that the continuity of a -• A (<x) in the sensé of (2.3) holds. To verify the
continuity of cr -• K (cr ) in the Mosco sensé, we proceed as follows : for any
v G K(cr), we can take the séquence of functions v' e K(af), defined by
v' — v 4- w' — w, where w' and w are the harmonie functions whose traces
wr\r=i/t(., arf)->w\r= *//(., <r) in H 1 /2(/") ; this implies v' ->v in
Hl{O) as o-'->o-; on the other hand, if v' G K(<rf) and t;'-• 1; in
7/1(i7)-weak as cr' -+ or, then, by the continuity of the trace operator and
the assumption (4.9) we have u | r ss ^ (., cr) and v eK(cr).

Consequently, arguing as in the second part of the proof of Theorem 2,
we conclude that the map o- -• uŒ is continuous from IR4 into Hl(f2). By
taking v = ua.± <t> in (2.8) for this case, with an arbitrary <f> e B{O), we
find

- aio-ï) ùs.ua + Àua = f a.e. in O . (4.12)

Since ua is bounded in Hl(f2) and a vérifies (4.5), we have

II ua IIA ^ C independently ofaeR4. (4.13)

Then, by (4.12) and (4.13), the continuity of o- -+ ua also holds from
R4 into Hà(0)-strong, for the topology of the norm || . ||4, and by (4.8),
o- -+ 3„Mo- is continuous in H~ lf2{F).

Therefore the map a -• fx {ua) is continuous and has a bounded range.
S o, by the Brouwer fixed point theorem it has a fixed point, which pro vide s
a solution to (2.1) corresponding to the définitions (4.6), (4.7) and (4.10).

We note that in the present case the mapping

is not defined for every v G V = H l(f2 ), but only for the subspace
HA(I2). This is the reason why the Theorem 1 or 2 cannot be applied
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directly to the solvability of the following quasi-variational inequality
corresponding to (4.2)-(4.4) :

uGHà(O) U K [ w ] ,

lal \ u ) Vu. V ( I ? - M ) + (AU- f ) ( v - u) +
Jn [ \Jn I J

+ fl( f « ) r ( f M, f « ) I (t? - M ) ^ 0 , V Ü Ê K [ M ] . ( 4 . 1 4 )
\J/3 / \Jn' Jr I Jr

Nevertheless the preceding discussion has proved the following existence
resuit.

THEOREM 4 : Let the above assumptions hold, in particular assume (4.5),
(4.9) and (4.11). Thenfor any f E L2(Ü) there exists at least one solution to
(4.14).

Remark 15 : The solution u to (4.14) satifies the équation (4.2) a.e. in
O, the first inequality of (4.3) a.e. on F, its second one in the distributional
sense in H~m(F), but the product in the condition (4.4) must be
interpreted with the duality pairing between H~m(F) and Hm(F), i.e.,

M uA uYu- if,[u]\ - 0 .

In order that (4.4) to be valid a.e. in F, the additional regularity
9nM G L2(F) would be required.

dnu iRemark 16 : We could replace the total flux dnu in (4.7) by any other

continuous functional from H~m(F) into IR. For instance, the special case
a = 1, y = 0 and

*[«](*) = * ( * ) - <3„w, v)r

for given functions h e Hm(F) and r\ e Hm(F), r\ 5= 0, have been solved
in [M] and in [JM] with a more abstract framework. This provides a new and
more direct proof of that result of [JM].

Remark 17 : If we take in (4.10), & G Hm(F) independent of o-, the
convex set K is fixed and well defined in Hl(f2 ) and the solvability of the
nonlocal Signorini problem is a direct conséquence of Corollary 2, taking

/t(«)= L , M, « eU\
\Jn Jn' Jr( f

Remark 18 : If we suppose ƒ s= 0, y ^ 0, then by letting
v = u+ = sup (u, 0) e K[w] in (4.14), we easily find that u ^ 0 a.e. in
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/2, which is a natural physical assumption. In particular, if we let

\ff <: 0 on F, we have u :> \jj [u] a.e. on F and u solves (4.2) with the

Neumann boundary condition

w, u ) = Oon T , (4.15)

which includes the introductory model problem (1.4) as a special case.
In addition to the preceding remark, if we choose K = V = ƒƒ *(i2),

A given by (4.6) and /A (U) — I u, M, u I a direct conséquence of
\Jn Jn1 Jr' )

Corollary 2 yields the following resuit.

PROPOSITION 4 : Let (4.5) hold and ƒ e L 2(/2 ). T/ien ffcere exists at least
one solution to the nonlocal Neumann problem (4.2), (4.15) and, in
particular, al s o for the introductory model problem.

If u is the density of some population, u should be a nonnegative function.
At points where u = 0 there are no members of that population, so that the
equilibrium équation (4.2) would only be verified in the subset {u > 0} of
O, as well as the flux condition (4.15) would hold only on F Pi {u > 0} .
Therefore, if we want to consider the equilibrium of a population which
does not fill completely the container O and we do not know a priori where
it lies, we should formulate this free boundary problem as the following
unilatéral problem

M 2= 0 , - fl M ! Aï* + À M 5= ƒ , M | - Ö l W l A w + ÀW — f \ = 0 ïn £2
\Jn j [ \Jt2 I J

wssO, anw+ y ( j uA u\ ï*0, uUnu+ y M w, j u \ 1 = 0 on F .

This problem is solvable directly as an immédiate conséquence of
Corollary 2, in the following form

w e K = {v e Hl{O) : i? ̂  0 a.e. in H }

Vu.V (v -u) + (Au- f)(v - u ) \ +

u ) y[\ uA u\ \ ( ü - i O ^ O , V I ? G K . (4.16)

n J \Jn' Jr I Jr

ƒ.{•(ƒ.-

PROPOSITION 5 : If (4.5) holds, for any ƒ G L 2(/2 ) f/ie nonlocal variational
inequality (4.16) has at least one solution.
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5. SOME ADDITIONAL REMARKS

5.1. First, let us show again that uniqueness or comparison properties fail in
gênerai for nonlocal problems. This is an essential différence with respect to
the local nonlinear problems (see, for instance [GT] or [CM]), as we have
already noted in Remark 3. Indeed consider, for ƒ E L 2(f2 ) and for some
continuous function a satisfying a(o-) === v > 0, Ver e (R, the following
nonlocal problem, which we know is solvable :

- ( ƒ . • AM = ƒ in f2, u = 0 on r . (5.1)

Let us now introducé u0 the solution of

- A«o = ƒ in n , u0 = 0 on F . (5.2)

For simplicity set ix (u) = u. Then, clearly, M is a solution to (5.1) if and
Jn

only if
u =

Integrating over 42, this implies

Conversely, if o- is a solution to

a = v(uö)/a(<r). (5.3)

then

u = crMo/^(wo) (5.4)

solves (5.1). Indeed (5.4) implies that fx{u) = a and (5.3), (5.4) with (5.2)
yields - Au = f'la(er) in /2. Thus if we fix, for instance, ƒ such that
M0 > 0 in O and if we define

fl(cr) = M ("o)/*" (5-5)

on some interval of U+, then (5.1) corresponding to this a(a) would have
infinitely many solutions (even an uncountable set of solutions !). Again,
since the solvability of (5.1) reduces to solve (5.3), it should be noted that
the existence and the number of solutions will depend on ƒ.

Remark 19 : The situation may be entirely different in the évolution case.
For instance, if one considers the parabolic problem associated with (5.1),
then it can be shown that it has a unique solution (see [CR]).
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5.2. We have always assumed a continuity hypothesis on the nonlocal
nonlinearity. Let us now show that existence can fail if, for instance, in (5.1)
the function a is not assumed to be continuous.

Let ƒ G L (O ) , ƒ < 0 in fï. Assume as above that /J, (M) = u. Then
J a

for two real numbers a, b (0 < b <. a), dénote by ua and ub, respectively, the
solutions of

— a Aua = ƒ in 12 , ua = 0 on F ,

and

- b Aub = ƒ in O , ub = 0 on F .

Since ƒ is positive one has - Aua — f fa < f/b = - Au b. Hence by the strong
maximum principle we conclude ua<ub in f2, and

(ua)= ua(x)dx< & (ub) = u
J a J a

b(x)dx.

For m = (/* (wfl) + jx (ub))/29 set

a(a) = b if s =s m and â(cr) = a if s > m .

The problem (5.1) corresponding to this function a (a) has no solution.
Indeed assume that M is a solution of (5.1). If /UL (U) =S m then u(/* (u)) — &
and u = ub which is impossible since we should have M (") = fj<(ub)>m.
Then <2(/x (M)) = a and « = ua9 which is again impossible since we should
have JA(U) = IJL (ua) < m. This complètes the proof of the nonexistence of
solution to (5.1) for the case of a discontinuous coefficient as above.
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