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MATHEMATICA!. MOOELUNG AND MUMEfMCAl ANALYSE
MOOÉUSATKJM MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 26, n° 3, 1992, p. 385 à 423)

COMPONENT MODE SYNTHESIS AND
EIGENVALUES OF SECOND ORDER OPERATORS :

DISCRETIZATION AND ALGORITHM (*)

F. BOURQUÏN O ,

Communicated by P. G. CIARLET

Abstract. — Component mode synthesis belongs to the class ofGalerkin methods and enables
to compute the eigenpairs of a differential operator on a domain that can be subdivided into
different subdomains on each ofwhichpartofthe eigenpairs of the same operator are assumed to
be known. Energy transfer between subdomains is achieved thanks to functions defined on the
whole domain and called « static modes », A new « fixed interface » method is presented, whose
discretized version extends the Hurty [1965], Craig, and Bampton [1968] one. It is based on a
special choice of the « static modes » as the eigenfunctions of the Poincaré-Steklov operator
associated with the domain décomposition. Error bounds are derived in the case of the heat
équation on a domain in IR", n ~* 2. A class of domain décomposition algorithms and several
numerical tests are also presented.

Keywords : Eigenvalues, domain décomposition, finite éléments.

Résumé. —La synthèse modale fait partie de la classe des méthodes de Galerkin et permet de
calculer les éléments propres d'un opérateur différentiel sur un domaine que l'on peut
décomposer en différents sous-domaines sur chacun desquels on suppose connue une partie des
éléments propres du même opérateur. L'énergie s'échange entre les sous-domaines grâce à des
fonctions définies sur le domaine entier et appelées « modes statiques ». On présente une nouvelle
méthode « à interfaces fixes », dont la version discrétisée généralise celle de Hurty [1965], Craig
et Bampton [1968]. Elle est fondée sur un choix spécial de « modes statiques » comme fonctions
propres de Vopérateur de Poincaré-Steklov associé à la décomposition du domaine. On démontre
des bornes d'erreur dans le cas de Véquation de la chaleur sur un domaine de (R",
n 2= 2. On présente également une classe d'algorithmes de décomposition de domaine et quelques
tests numériques.

(*) Received April 1990.
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386 F. BOURQUIN

1. INTRODUCTION

The dynamics of a structure behaving linearly and subjected to an
arbitrary variable load can be determined by its free vibrations and its initial
state, thanks to the modal superposition principle (cf. Imbert [1979]), also
called Fourier représentation (cf. Dautray & Lions [1985]). But the
computation of the needed eigenpairs gives rise to a number of practical
difficulties especially if repeated analysies are required, when the structure
is made of a large number of components connected together, which may
differ among themselves, as far as thermomechanical or geometrical
properties are concerned. For example, space véhicules can be vie wed as a
set of interconnected substructures like launchers, payloads, boosters, and
appendages that are usually much smaller and lighter than the main body. In
the same way, off-shore oil extraction facilities, as well as satellites are
composed of trusses, plates... Modem slender bridges, that in addition
make sometimes an essential use of cables, and industrial products such as
cars or ships also share the same characteristics. From the mechanical point
of view, the description of multi-structures often leads to somewhat
mathematically complicated models (cf. Aufranc [1990], Bernadou étal.
[1988], Bourquin& Ciarlet [1988], Bourquin & Ciarlet [1989], Ciarlet
[1987], Ciarlet étal. [1987], Ciarlet et al [1989], Le Dret [1987]). Their
often clear décomposition in much simpler components suggests to start to
analyse the latter under static or dynamic load, and then to take into
account in the analysis of the entire structure the behavior of each
component considered as isolated from the other ones. Component mode
synthesis takes advantage of that idea, and thus belongs to the class of
domain décomposition methods.

In order to describe the so-called « fixed interface method », we consider
the following eigenvalue problem on a domain f2 = ftx U f22 U F <= Mn (cf

fig. 1) :
— Au + du = Au in Ï2 , ,,,

Ou +N — = 0 on a/2 ,
bn

where d stands for a positive constant, and the pair (£>, N ) satisfies either
(D, N ) = (1, 0), or (D, N) = (0, 1). This formulation allows to treat
simultaneously both homogeneous Dirichlet and Neumann boundary con-
ditions.

Figure 1. — The domain I29 represented in 1R2.
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COMPONENT MODE SYNTHESIS OF SECOND ORDER OPERATORS 387

This problem is well-posed, and admits a séquence of « global eigenpairs »
(Ait> uk)k = \ e R + xH1(ï2), arranged in such a way that Xk+1^ Xk,

N

Let us assume that we know the Nt first eigenpairs (A(;) M^^ij e
R+ x Hl(I2l) of the same operator on each subdomain Ï2n but associated
with a Dirichlet boundary condition on F. They solve the boundary value
problem

— Au + du = À u in 121 ,
u = 0 on F, (2)

Du + iv ^ = 0 on dn\r,

which is als o well-posed. The eigenfunctions Mi7 are called « fixed interface
modes ».

Let us assume that we also know N r functions (ürc)t £ j E Hl(O ), called
« static modes », such that the traces of the latter on F do not vanish. We
may define the approximation space

VN = Span ( ® (ii )?1 ! © (*ƒ*)?£ J . (3)
U = l,2 J

Roughly speaking, component mode synthesis consists in Computing an
approximation of a small number j0 of eigenpairs (Xk, uki^ \ by a Galerkin
method over the space VN.

In f act, component modes ul} and uri have first to be computed by a fini te
element method, or any other suitable method. They may alternatively be
measured. Close-form or exact analytical solutions are also accepted.
Component mode synthesis thus results from two different approximations,
mode truncation and discretization. Therefoie, the irue approximation
space should be expressed as

Vh
N = Span { © {u*)»L , © (üh

r^L il , (4)
U = 1, 2 J

where the superscript h dénotes a discretization parameter.
Component mode synthesis has become a very popular numerical tool in

aerospace engineering in the last two decades, because it usually meets high
standards of computational efficiency and versatility. It enables to perforai
structural optimization against vibrations or buckling (cf. Valid [1982]) by
parametric studies, since geometrical or mechanical perturbations of one
substructure do not affect the free vibrations of the other ones. Hence,
repeated modal analysies of the entire structure remain very cheap.
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388 F. BOURQUIN

Moreover, it fits in the modem managerial practice of large industrial
project s where substructuring is naturally imposed by the multiplicity of
contractors in charge of realizing spécifie parts of the structure.

There exists a lot of different methods depending on the type of boundary
conditions on the interface F that are imposed to define the eigenpairs on
the different subdomains, and on the way to couple the latter. For example,
in problem (2), the Dirichlet condition imposed on F c&n be replaced by a
Neumann or a Fourier condition. We refer to Craig [1985], Gibert [1988],
Imbert [1979], Jezequel [1985], Meirovitch [1980], Morand [1977], and
Valid [1977] for detailed reviews or analysies on this topic, to Morand &
Ohayon [1979], and Valid & Ohayon [1974] for applications of the idea to
fluid-structure interaction problems.

In Bourquin [1989, 1990Z?], we have proposed a new method which seems
to be of wide applicability (cf. Bourquin [1991]). It differs from ail existing
ones, because the eigenfunctions of the Poincaré-Steklov operator related
to the interface F9 once lifted on each subdomain, are chosen as static
modes. This strategy leads to a diagonal stiffness matrix. The method is well
suited to error analysis in a continuous framework. Furthermore, its
discretized version extends the classical Hurty [1965], Craig, and Bampton
[1968] one, for which the static modes cannot be interpreted as discretized
versions of continuous functions ; in this paper, both methods will be
analysed and compared.

We follow the method advocated in Bourquin [1990a] and Bourquin
[1991], by first focussing our attention on the mode truncation error : taking
advantage of the error bounds derived for an « intermediate method »
defined with continuous component modes that are assumed to be exactly
computable, we now control the perturbation resulting from the discreti-
zation process by classical arguments relevant to the finite element theory.

This paper is organized as follows : section 2 is entirely devoted to
background information regarding the intermediate method : our choice of
static modes is explained and the main bounds are given for a model
problem and without proof. Section 3 concentrâtes on the finite element
approximation of the proposed component mode synthesis method. New
error bounds related to this discretization are derived. In particular, the
approximation of the eigenpairs of Poincaré-Steklov's operators is assessed.
In section 4, error bounds are given for the continuous and the discretized
versions of the Hurty, Craig, and Bampton fixed interface method. A
natural algorithm is explained in section 5 and compared with the classical
one. Other algorithms are also briefly sketched. Finally, numerical tests
regarding the intermediate method and its discretized version are presented
in section 6 ; they confirm the predicted rates of convergence as far as mode
truncation error is concerned.
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COMPONENT MODE SYNTHESIS OF SECOND ORDER OPERATORS 389

2. PRESENTATION OF THE INTERMEDIATE METHOD

In what follows, f2 dénotes a domain in IR", n ^ 2, with piecewise regular
boundary, separated in two parts f2 x and f2 2 by a smooth surface F (cf.
fig. 1). Let us dénote by nt the unit outer normal vector along the regular
parts of the boundary 3 f21 of the domain f2 n and by n the unit outer normal
vector along the regular parts of the boundary 3 f2 of the domain f2. For the
sake of simplicity, we assume the interface F to be part of a hyperplane.
Most of the results stated in the sequel still hold when the domain f2 is
decomposed into p subdomains, p > 2.

For any domain B, we dénote by Hl(B ) = W1' 2(B ) the Sobolev space of
square integrable functions with square integrable derivatives. For a
définition of the spaces HS(B), s G R, see Lions & Magenes [1968], and
Grisvard [1985].

Without loss of generality, we may assume that the solution w of the
elliptic homogeneous boundary value problem

\-Aw + dw = f in f21 , i = 1, 2 , ƒ e L2(f2) , w = 0 on r

|i>w + ;v — = 0 on a / 2 ( \ r , / = i, 2 ,

satisfies w\n e H1 + a(f2t), 0 < a =s 1, a =£ 1/2, for each subdomain
f2t. An application of the closed graph theorem yields
\\w\n \\H

1 + a(n ^ ^ \f L 2 w ^ e kes t exponent a can be assessed in

various situations analysed by Kondrat'ev [1967], Grisvard [1985], and
Dauge [1989] (see also Leguillon & Sanchez-Palencia [1987] for elasticity
problems). Practical examples are given in Bourquin [1991].

Remark 1 : The results of this paper still hold if we only assume that
w\n e Hl + a(f2l Pi W), where W dénotes a neighbourhood of the interface
F.

Let us introducé the spaces

V = {v E H x(f2 ) ; Dv = 0 on df2} ,

V = {v e V ; v = 0 on F } , ( 6 )

Vt - {veHl(f2t); Dv = 0 on df2 \F} ,
o

We define the symmetrie eoereive continuous bilinear forms on the spaces
H1(f2l) and Hl(f2) respectively by the following formulas :

vol. 26, n° 3, 1992
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VuVvdx + d \ uvdx Vw, p e i / 1 ^ ) ,

(7)
a,(M, U) Vu, ü

where d stands for a strictly positive constant. We also define the bilinear
forms

( M , I>) , = K U < £ C Vw, P e L 2 ( / 2 , ) ,

2

( M , Î ? ) = J ] ( M , I ? ) , V M , u e / "
X - 1

(8)

In this setting, problem (1) is equivalent to the variational eigenvalue
problem

ffînd (A, u) e M x V , such that
\a(u9 v) = A (M, Ü) VI? G V . (9)

In what follows, the spaces H\f2 ), Hl{Üt), L2(t2), andL2(/2J will be
endowed with the norms ||i? ||a = \/a(v, v), \\v\\a — \/ai(v> v)>

Mo,/2 = V / ( ^ ) ' a n d lvlo,i3, = \Ap> V^ respectively.

For any function f G Hl(f2), we dénote by Tr r t? its trace on the surface
F. The trace operator Tr r maps the space Hl(f2) onto the space
Hlf2(F), and the space HQ{O) onto the space H^iF). Intrinsic définitions
can be found in Ggaliardo [1957], or Lions & Magenes [1968], but we do not
need them. We shall use that the imbeddings Hm(F)^L2(r) and
HQQ'(F) £> L2(F) are compact. Let us define the space

Vr = Tr r V , (10)

in such a way that Vr = H$(F) if (D, N ) = (1, 0), and Vr =Hm(F)
otherwise.

The harmonie lifting operator

R: V r -> V

v - • Rv = v ,

where the function 0 is defined by

- Av + dv = 0 in /2Z i = 1, 2 ,

V = V

is obviously continuous.

— = 0 on 9/2 ,

onT ,

(H)
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COMPONENT MODE SYNTHESIS OF SECOND ORDER OPERATORS 391

For any complete family ( w ^ f ^ in the space V r, we set

wrt=Rwrt. (12)

The functions wrç are called « static modes ».
Let us recall that for each subdomain 12 n the family of « fixed interface

modes » (ul})*™x defined as the family of eigensolutions of problem (2) is
complete and orthogonal in both spaces Vt and L2(f2t) (cf. Taylor [1958]).
The functions utJ can be extended by zero to functions of the space V.

If we start with an arbitrary family of static modes (wr%)f ™l9 then the
family

9= © K);=°°i® (y>rt)t?i> (13)
i = 1,2

is complete in the space V. Although it could be possible to define a
Galerkin method based on the family *§ truncated at a certain range, we
prefer to deal with static modes enjoying special orthogonality properties :
to this end, let us introducé the symmetrie bilinear form

b ( u 9 v ) = a ( ü , v ) V u , v e V r i (14)

the continuity and coerciveness of which are obvious conséquences of the
continuity of the lifting and trace operators R and Tr r, and of the
coerciveness of the bilinear form a(., . ) ; thus, there exists an isomorphism
« : V r - > y f , such that

) = v.r(Vu,v)Vr Vu,veVr. (15)

In the sequel, we may dénote this duality product by the symbol

There exists also a self-adjoint compact operator T on L2(F) (cf. Taylor
[1958]), such that its range lies in V r and

b(Tu,v) = L2{n(u,v)L2{r) Vue@(T) Vu e L2(F) . (16)

The operator <& can be easily interpreted as a sum of two « inverse
Calderon's operators » (cf. Grubb [1977], Calderon [1963]) : since we have

2 r r
(<£uy v) = £ Vu Vv dx + d \ üv dx V « , i ) e T / f ,

i = 1 J/2, Jot

formai intégration by parts yields immediately

2 f 92|fl
(<êu,v) = £ -—Lvdr, (17)

.Ti Jr dni
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392 F. BOURQUIN

where dF dénotes the Lebesgue measure on F. This identity does make
sensé without extra regularity assumptions on 5, if the intégrais in the right-

/« lu, \
hand side of (17) are understood as duality products : ( , i; ) ; in

\ 3«, /
several classical papers (cf. Agoshkov [1988] and included références), the
operator <& is referred to as a Poincaré-Steklov operator. Hère, we shall
adopt this terminology for both operators <$ and T.

Let p e LCO(F) dénote a positive function that is bounded away from
zero : the spectral theory of self-adjoint compact operators (see Taylor
[1958]) ensures the existence of a family (w/t)f :?i G Vr which forms an
orthogonal basis of both spaces Vr and L2(F), and also of a séquence

i e R» s u c h t h a t

0 < A r i =s Ar2 *£ • •• s lim Ar^ = + oo ,
+ 00

f

b(urç, v) = \ r î urg vp dF Vu e Vr .
Jr

(18)

We let ürj = Rurj, for any integer y. Then the family ( w ^ ) ^ ! associated
with the spectral basis of the Poincaré-Steklov operator T will be chosen as
basis of static modes. Thus, we have built a complete family in the space V :

& = @ (uh,)tri ® («rf )?"i . (19)
t = 1, 2

Remark 2 : The interest of those static modes seems to be partly technical
(cf. Bourquin [1991]).

On the other hand, their définition is intrinsiquely tied to the problem
under considération no matter how many subdomains the whole domain is
split in, and no matter how ramified the interface is. Notice that fixed
interface modes also share the same property. Furthermore, our choice
allows for a unified approach, because static and fixed interface modes are
ail solutions of eigenproblems derived from the main one.

From the mechanical point of view, the static modes correspond to the
eigenvectors of the compliance matrix associated with the interface F. They
represent the way the subdomains exchange energy. They also correspond
to the free vibrations of the same elastic structure il but whose mass would
be concentrated on the interface F. In this respect, the function p should be
interpreted as the mass density of the structure along the interface F. It is
introduced hère as a purely numerical tool as in Destuynder [1989], and may
be tuned in such a way as to speed up the convergence of the method. M
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COMPONENT MODE SYNTHESIS OF SECOND ORDER OPERATORS 393

The intermediate method corresponds to a présentation of the component
mode synthesis in a continuous framework. It dépends on a triple
N = (N l9 N2, Nr) of control parameters which détermine the interpolation
space VN defined by (3). It consists in Computing the j 0 first solutions
(Af, wf )4°=i of the finite-dimensional eigenvalue problem

[find (À w, UN)GUX VN such that

\fvN eV
(20)

which admits a séquence of NT = N { + N2-\- Nr independent solutions
according to the spectral theory of symmetrie positive matrices. Of course,
we impose the condition j0 ^ N T. In the sequel, we assume that

l urt urî P = 1 , 2 = 1, + oo ,

(uip ul}\ = 1 ,
(M*, Uk) = 1 ,

j = 1, + oo , ï = 1, 2 ,

(«?, 4) = i.
(21)

Let us dénote by PN the orthogonal projection mapping on the space
VN with respect to the scalar product a{., . ).

The foliowing result has been proved in Bourquin [1991, chap. 3] :

THEOREM 1 : There exists functions o-f, st{s, k9 Nt), i = 1, 2,
er(a, k, Nr) and C (k), such that

0 V <*k < h then

(22)

ii) The relative error erf satisfies

2 et(s, k, Nt) er(a, k, Nr)

, _ 1 A , W A PAF

lim €t(s9 k,Nt)= lim e r ( a , k9 Nr) = 0 .
iV, -^ + oo Af r-* + oo

± , (23)

(24)

Moreover, there exists two positive bounded and increasing functions
Ci(Ni), C2(N2) and a constant Cr such that

a,k9Nr)] i
- ^ 7 , • ° — è - (25)
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394 F. BOURQUIN

3. FINITE ELEMENT APPROXIMATION

As mentioned in the introduction, all the modes utJ and ur% have in
practice to be computed by a Galerkin method for example. We shall
analyse hère the « true » component mode synthesis method and give
similar error bounds as in theorem 1.

Let h dénote a small positive real parameter, and (VA)A>0 a family of
finite-dimensional spaces such that V h a V, h > 0, and for any function v in
the space V, P h v -• v if h -+ 0, where P h dénotes the orthogonal projection
mapping on the space Vh with respect to the scalar product a( ., . ). This
choice thus excludes non-conforming finite element methods. We let

Vf = Vhn Vt , Vr = Trr (Vk) ,

and
(26)

In the sequel, Ph
r : V r -• Vp dénotes the orthogonal projection mapping

with respect to the norm || . \\b on the space Vr.
For each subdomain J7P let us define the approximate fixed interface

modes (A*, u*)*L x G R X Vh
t as the first Nt (Nt ^N?) solutions of the

variational eigenvalue problem

find (A \ uk) E R x Vf such thaï

at O \ vh) = A h(u\ vh\ Vt?* e Vf .

We impose the functions u^ to be normalized in the space L2(f2l).
Let us introducé the spaces

(27)

vh = vhn v ;
" •

Nt

(28)

and the corresponding orthogonal projection mappings with respect to the
scalar product a( ., . ) denoted by P , PNVN2>

 anc* ^A^ respectively. On the
other hand, we call

M2 AN Modélisation mathématique et Analyse numénque
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COMPONENT MODE SYNTHESIS OF SECOND ORDER OPERATORS 395

the discrete harmonie lifting operator : the function vhh satisfies

U g * \ wh) = o Vw* G vh, ( 2 9 )

\vhh = vh on F .

Of course, we do not have Rh = PhR. In this setting, the bilinear form
defined by

bh{v\ wh) = a(Rhv\Rhwh) Vi>\ wh e Vp (30)

enjoys continuity and uniform coerciveness on the space Vp, endowed with
the norm ||t?||fr = b{v, v)m of the space Vr. Since harmonie functions
minimize the energy among all functions matching a prescribed value on the
boundary, we have the more précise bound bh(v

h, vh) ^ b(vh, vh). There-

fore, there exists a family of eigenvalues (^rt)ï = \ e ^ + and ei family of

associated eigenfunctions {up^^i eVp satisfying

0 < A ri ^ A r2 =s . . . ̂  A rNhr ,

î Vf ̂ Nr, (31)

uh
rïv

h pdr VvheVh
r.

r

In the sequel, the functions p murç are assumed to be normalized in the
space L2{F).

There exists also a self-adjoint compact operator Th:L2(r) -• V r , such
that its range lies in the space Vr and

bh(T
hu,vh)= f uvhpdr VueL2(F), (32)

Of course the spectra of the bilinear form bh and of the operator
Th coïncide.

Let us define the approximate static modes by the formula

üft =Rhur2 l = l,Nr, (Nr^Nr). (33)

The family

i = 1, 2

allows to define the approximation space

Vh
N = Span ^ . (35)

vol. 26, n° 3, 1992



396 F. BOURQUIN

Let us dénote by pN*h the orthogonal projection mapping on the space
Vh

N.
It follows from the above définitions that the family tF^ remains

orthogonal in Vh for the scalar product a(., . ). The space V^ appears as
obtained from the space V N through a rotation.

The real life component mode synthesis method consists in finding the
jQ first solutions (Af'\ u^hik°= 2 e U+ X V^ of the well-posed eigenvalue
problem

( find (A N- \ uN> h) G IR x V£ such that

\a(uN>\ vN-h) = \N^h{uN'h, vN>h) VvN>h G V
(36)

It dépends on four control parameters, N u N2, N r and h, and can be put in
the following form :

where

find (A, X) e M x RNT , such that KX = AMX ,

> i l

(37)

K =

0

0

X h

A r i

(38)

and

M = (39)

Note that the stiffness matrix is diagonal, whereas the mass matrix
possesses off-diagonal terms, whence this kind of method is said to act
through mass coupling.
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COMPONENT MODE SYNTHESIS OF SECOND ORDER OPERATORS 397

Of course, we assume that j 0 ^ N T. Notice that for the sake of simplicity
we have neglected the numerical intégration.

Consider now the finite element approximation of the global eigenvalue
problem, that is (9) with the choice V = V \ and call ( A £ u%fkl x e R x V h

the family of corresponding eigenpairs. Classical results in approximation
theory {cf. Ciarlet et al. [1968], Strang & Fix [1973], see also Chatelin
[1983], and Babuska & Osborn [1990]) allow to assess the error A£ - Xk,
k = 1, y g, in terms of the approximation error associated with the corre-
sponding eigenfunction. Unfortunately, our attempt to obtain directly
similar bounds of the error Af 'h - A* by the method developed in Bourquin
[1990a] failed, except in the limit case where N r = N £, but this situation
corresponds to the choice made by Hurty, Craig, and Bampton and will be
analysed in section 4. As a matter of f act, we need the vibration problems to
be posed in non-variational form as well as in variational form. Variational
approximations forbid such a possibility. Nevertheless, the error analysis
regarding the real method (36) leads to the following results :

THEOREM 2 : i) The following inequalities hold :

(40)

ii) Moreover, there exists fonctions
eh{k, N ) , Ct{Nt) and C (£ ) , such that

et{s, k, Nz), er{a, k, Nr),

, (41)

and

or equivalently

<r£-h*zC{k)
er{a9 k, Nr)

-\l+S
la

n- 1

, (42)

sh(k,N), (43)

where the fonctions et and sr satisfy (24) ; the fonctions C t{N ( ) enjoy tht
same properties as in theorem 1.

The discretization error eh{k, N ) is bounded as follows :

1 J

Nr

t 1

- (44)
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398 F. BOURQUIN

Some comments are necessary :

i) First of all, the discretization error sh(k, N ) tends to zero with h, since
we deal with a convergent séquence of approximation spaces (Ph -• I
pointwise).

ii) Inequality (40) means in particular that component mode synthesis
cannot enhance the accuracy of the finite element solution.

iii) As expected, mode truncation error and discretization error add to
one another. This feature essentially reflects the method of proof. The main
différence with the resuit of theorem 1 lies in the émergence of a possible
balance between both types of error. Taking into account a large number of
modes détériorâtes the discretization error inasmuch as the approximation
errors of all component modes add to one another, and more especially as
the latter may grow rather fast with the eigenvalue référence number j or l.
On the other hand, mode truncation error remains insensitive to the
discretization parameter h, Thus, both errors play a different rôle from each
other. In practice, the number of modes TV should be chosen first, and then,
for that value of TV, the parameter h should be adjusted to a suitable value
insuring the discretization error to stay of the order of magnitude of the
prescribed accuracy. Furthermore, if numerical results need be improved,
the parameters N and h have to be modified simultaneously in such a way
that the errors of the different types remain of the same order of magnitude.
Nevertheless, from Poincaré's [1890] Min-Max principle, fixing the discreti-
zation parameter h and increasing the number of modes will improve the
approximation, but this may not be always the best strategy. Note that a
similar balance of error has been observed by Door [1989], who suggests to
enforce interdomain coupling by means of Lagrange multipliers. This
strategy leads to a stability condition limiting the number of Lagrange
multipliers with respect to the mesh size.

iv) As a conséquence of the above remark, and assuming theorem 3 to
state optimal bounds, discretization may impair the accuracy of the
proposed method, except if the mode truncation error behaves nicely : in
that case, a very small number of modes will be sufficient to control the
process, keeping the discretization error at a low magnitude for a reasonable
value of the mesh size. This is why our basic numerical test will concern the
intermediate method, which allows discretization effects to be engineered
away, and for which we shall give in section 6 an example of application.

However we can refine in some sense the results given in theorem 2 :

THEOREM 3 : Define the function wk e V solution of problem (5) with
f = Àkuk. Then there exists functions <r^h, er{a, k, Nr), e2(ki h),
e3(k, h, Nr), C (*), C^N,), i = 1, 2, and constants Ce such that (41) holds
and
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and

aC ' ^ i
er(a,k,Nr)

Ï^C^N^N*
2a

n- 1

, (45)

where the function sr satisfies (23) and

c2<jfc, h)^C(k)\\(I-Ph)wk\\
2

a,

e2(k9 h)

. (46)

(47)

•
Let us briefly comment on those results :

i) Notice that we have lim e2(k, h) — lim e3(k, h, Nr) = 0, since we

deal with a convergent family of approximation spaces.
ii) Theorem 2 is a priori not better than theorem 1, even if A^ s=

ÀlN but brings an enhancement as far as discretization error is concerned :
by comparing (44) and (46), this error does not depend any more on the
number N t of fixed interface modes taken into account ; therefore, mode
truncation error and discretization error tend to découplé. However, they
remain coupled through the static modes ürc.

Proof of theorem 2 : Inequalities (36) follow directly from the Min-Max
principle. Proof of inequality (38) is broken in two steps.

Step 1 : error splitting.
Let V(k) dénote the direct sum of the first eigenspaces associated

respectively with Xl9 A2, ..., Àk. We recall without proof the following result
(cf. Ciarlet et al. [1968], Strang & Fix [1973], see also Chatelin [1983], and
Babuska & Osborn [1990]), which holds for any convergent séquence of
approximation spaces VN.

LEMMA 1 : There exists functions a^, C (k), C'(k) such that

if

if ( T ? < 1 , (48)

C(k) sup
veV(k)
(t>, v) - 1
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From lemma 1 applied to the séquence of approximation spaces
V$, the relative error cr^'h is controlled by the approximation error

"•*•* = \\uk-P
N'"uk\\

2
a. (49)

Using triangular and Schwarz's inequality, together with définition (35) and
normalization, we obtain

* = 1 y = 1

where

\2

\\ürt-ü
hM\l)> (50)

/

»>*= \\uk-P»uk\
2

a, (51)

and

v I (52)
i j = J

2 + oo +oo

if we have the expansion uk = £ £ katJ ul} £ *ar^ 5 r ? . Again, normaliz-
i = i j = i f = i

ation yields C (£) = Â  max (A fj1, A^1, A^1).

5fep 2 ; estimate of the gap between the spaces V^ and VN.

Applying lemma 1 to problem (27), there exists constants C tJ such that

it remains to evaluate the last terms of (50) by similar techniques. The
following lemma indicates the expected accuracy of the eigenpairs related to
the Poincaré-Steklov operator when the latter are computed by a Galerkin
method as described in (31) and (33).

LEMMA 2 : There exists a constant C% such that

(54)

That the order of convergence is the same for the eigenvalues and the
corresponding eigenfunctions follows from the f act that we do not have
Th - P$T, where T and Th are defined by (16) and (32) respectively.
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Proof : Let Im: Vr -• L2(F) dénote the canonical injection mapping. In
order to apply Chatelin [1983, theorem 6.7], it suffices to prove that

Th o 11/2— T o I m in operator norm , (55)

or that Th -+T pointwise, since the operator / 1 / 2 is compact.
For arbitrary functions u e L2(F) and v e V r, we have

b((Th-T)u,v) = b((Th-T)u,Ph
rv)-b((I-Ph

r)Tu,v); (56)

on the other hand, for every function vh sVp the following identity follows
from définition (14) :

b((Th-T)u, vh) = a(RTrr(R
h Th - RT ) w, Rvh) ;

since the function Rvh is harmonie, we obtain

b((Th~T)u, vh) = a((RhTh-RT)u,Rvh) , (57)

or equivalently

b((Th-T)u, vh) = a((RhTh-RT)u,PhRvh)-a((I-Ph)RTu,Rvh).

(58)

But for every function wh G V \ the following identities hold :

\a(RhThu, wh) = a(RhThu, RhTrrw
h) ,

\a(RTu, wh) = a(RTu, RTrr wh) .

Hence, from the définitions (14), (16), (30) and (32), it follows that

a((RhTh~RT)u, wh) = 0 . (60)

Combining (56), (58) and (60), we obtain

\\(Th-T)u\\b^C(\\(I-Ph)RTu\\a+ \\(I -Ph
r)Tu\\b). (61)

Since we have || (ƒ — P£) i?|| ss || r — i?A || for every function vh in

Vp, the choice vh = Tr r P
hRv in this inequality leads to the bound

\\(I - P h
r ) v \ \ b ^ C \ \ ( I - P h ) R v \ \ a . (62)

Thus, estimâtes (61) and (62) yield

\\(T-Th)u\\k ^C\\(I -Ph)RTu || , (63)
II tl £ II M a

and (55) holds, since Ph^>I pointwise.
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Therefore the family Th o ƒ m forms a strongly stable approximation of
the compact operator Toi m. Hence, estimâtes indicated in (54) follow
directly from Chatelin [1983, theorem 6.7] and from inequalities (31) and
(63). Thus lemma 4 is proved. •

From (50), (53), and (54), one can dérive the following estimate :

• (64)

Recalling that the approximation error EN*k satisfies the same inequalities
as <rk (cf Bourquin [1991, chap. 3]), namely (23) and (25), inequality (64)
yields (42), (43) and (44) and complete the proof of theorem 2. •

Proof of theorem 3 : Again, we have to estimate the error ENy h' k defined
by (49). We obtain immediately

where the projection mapping PNt h is defined after (28) and

gN,h,k = | | ( / . p * . * ) , ^ . (66)

On the other hand, définition (28) leads to the identity

V = v$flyN2(B (VN1,N2)
±VH ® (V^)"1^ © Span { ( w ^ ) ^ } , (67)

and we can décompose the function uk according to (67) ; it follows that

"* = (I - Ph){Uk ~ & Tr r uk) + ^ £ *a* uh
l} + ^ karï ürï . (68)

i = 1 2 / = 1 t = 1

Therefore, by obvious orthogonality properties, we have

uk — V / , a i ; M/y "*" 7, a r £ Mr^ » (°9)
i = \,2j = 1 f = 1

and the approximation error (66) can be rewritten

i = 1 , 2 ; = 1 +JV,

+ oo

+ X ^rï(karï)2 > (70)
f = 1 + N r

since the function w^ satisfies w^ = uk — /? T r r i/fc.
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It remains to mimiek the proof of theorem 1 given in Bourquin [1991,
chap. 3] : let us first compute the coefficients kafj and kar$ : from (9) with
the choice v = ujj and orthogonality properties of the functions M(*, we
obtain

*a*A* = At(Mjtf MJ.). (71)

In the same way, we get

harï Xrt = Ak(uk, ürt) . (72)

Since the family (w/y)y I j is orthonormalized in the space L 2(Oi), normaliz-
ation condition (uk9 uk) = 1, together with (70), (71), (72), and Bourquin
[1991, chap. 3, lemma 5] yields

TN
r

• „( / -^)w*n:. (73)
A i

where the function sr(a, k, N r) satisfies (24).
On the other hand, the last term in (65) can be estimated thanks to (69)

and lemma 2, as follows :

A ^ r

inf \\pN.kuk-v\\2*-± Y Cg\\a-Ph)ür(\\
2. (74)

Lemma 1, inequalities (65), (73) and (74) complete the proof of theorem 3.
•

S o f ar, the type of approximation space Vh remains arbitrary. In
nowadays practice, conforming finite éléments are widely used for this kind
of analysis. If the parameter h represents the typical size of a uniform mesh,
the convergence rate of the functions eh(k, N ), s2(k, h ), and e3(k, h,
N r) dépends on the estimated regularity of the functions to be approxi-
mated, presently utj and ür%. By hypothesis, we already know that
UijB Hl + a(f2i), a > 0 . On the other hand, it is possible to predict the
minimal regularity of the static modes ürt in the case of model problems
(see Lemrabet [1977, 1978]). One can prove that the function uri is smooth
only in the interior of the interface F. In any case, if there exists a real
number a > 0 such that all the functions wk, utj and ürt belong to the space

H1 + a({2 ), where Hs(f2 ) dénotes the usual Besov space defined by the K-
method (cf. Babuska & Osborn [1990]), then we obtain

k, N ) + e2(K h) + B3(k, KNr) = 0(h*) . (75)
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This a priori poor convergence rate can be strikingly enhanced by means
of Babuska's h-p version of the Finite Element Method with a non-uniform
mesh, designed in such a way as to capture the singularities (cf. Babuska &
Osborn [1990] and included références). We shall not go further in that
direction.

However, in the case where all the functions involved in the approxi-
mation process are regular on each subdomain, more usual finite element
theory (cf. Ciarlet [1978]) yields

sh(K h ) *f K Nr)

max " y » m,

for éléments of sufficiently high order, where || || m n dénotes the norm in
the space Hm(Oi).

In order to summarize the results of theorems 1, 2 and 3, let us draw a
chart indicating the different approximation spaces involved, as well as the
approximation or discretization errors that add to one another, thus yielding
the error associated with component mode synthesis method :

i - 1 A iJV,-

Ph)wk\\
2

(ƒ -Ph)ür2\
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4. ERROR BOUNDS FOR THE HURTY, CRAIG, AND BAMPTON METHOD

Let us now turn to the method developed by Hurty [1965] Craig and
Bampton [1968]. It is based on a simple but blind choice of static modes ;
the latter are obtained through the lifting in Q of all the basis functions that
span the space V r (or Vr). Although it has become a popular engineering
tooi in the last decades, and despite of its already long career, we give and
prove in this section the corresponding error bounds, that we could not find
in the littérature.

Let us start with a formulation in a continuous framework : we consider
hère an arbitrary Riesz basis (wr$)f ^>

l of the space Vr. Then the family
9 = ® (Uij)^^ © (^rÔÎ^\ forms a Riesz basis of the space V (cf.

Bourquin [1991, chap. 3]). Introducing the space

VN^NI^ ® s P a n {("y)7ii} ® RV r > (77)

where, of course RV p — Span {(w^)f ^ i } , the intermediate method would

consist in computing the j 0 first eigenpairs (A^ l' 2, ük
 l' 2)^°= l of the

variational problem (9) with V = VN^N2. The approximation space

VNX,N2 is infinité-dimensional, but a finite element (or any type of)

discretization restaures a finite number of static modes, and therefore of
degrees of freedom.

Let (wp% )( 12 dénote any basis of the space V p. We may introducé the
space

*%,*2= ® sPan {tâj)jLi} ®R\Vhr)i (78)
i = 1, 2

where Rh(Vr) = Span {(wh
r
h^l i} ; we have dim VNltN2 - N{ + N2 +

N p. This expression dépends on h, or more precisely on the number of

degrees of freedom associated with the interface.

The real method consists in computing the j 0 first eigenpairs (A .̂l' 2' ,

„NhN2,hyQ^^ o£ p r o ki e m (9) wjth y = y^N^ xhis problem can be

formulated thanks to matrices :

find (A ,X) sUxNl + Nl + Nf such that KX - AMX = 0 , (79)
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K =

Ln

'IN,

and

Af =

0

A h
A 2 1

o

' 1 O"

1

1

[a(wh
w

h
rrw

h
r
h

k)]_

(80)

(81)

None of those matrices is diagonal, but since the stiffness matrix K exhibits a
clearer sparsity than the mass matrix, this method is said to act through mass
coupüng. As a matter of fact, the « internai degrees of freedom » (or fixed
interface modes) of both subdomains are not coupled through stiffness.

With these notations, the following bounds can be derived :

THEOREM 4 :
i) For any set of parameters N = (N x, N2, N r), we have

(82)

i i ) Moreover, there exists functions crk
 h 2, C (&), such that ifcrk

h 2 < 1 ,

then

^N
uk - uk

(83)

H o / 2

furthermore, the relative error crk
 l' 2 satisfies

AiNi '
(84)
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where lim st(s, &, y) = 0, i = 1, 2, and there exists functions C,(iVt)
J -> + 00

satisfy ing the same property as in theorem 7, such that

(85)

In the same way, the following result can be stated regarding the
discretized version of the Hurty, Craig and Bampton method :

THEOREM 5 :

i) For every set of parameters N = {(N x, N2, Nr), h}, we have

A \ h T^ l )^ !»" \ N, h fQ£L\

ii) Moreover, there exists functions <rk
h 2' , C (£), SMC/Z r to , /ƒ

~NhN2,k 1, then

„NhN2,h\\211 IL
(87)

furthermore, the relative error satisfies

• C(k)
i = 1 , 2

(88)

(89)

where the functions Ct(Nt) satisfy the same properties as in theorem 1.
•

Let us now briefly comment on those results :

i) Inequalities (82) and (86) mean in particular that the Hurty, Craig, and
Bampton method is a priori at least as accurate as the method using the
eigenpairs of the Poincaré-Steklov operator, but it uses a much larger
number of basis functions.

ii) It turns out that mode truncation and discretization errors totally
découplé for the Hurty, Craig, and Bampton method. But this nice feature
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hides the f act that the number of basis functions iV1 + Af2 + iVr dépends on
the discretization parameter ; in the case of a continuous formulation, the
space V N is even infinite-dimensional, thus forbidding any computational
work.

Proof of theorems 4 and 5 : It appeals to the technique already used in the
proof of theorems 1, 2 and 3. Inequalities (82) and (86) are Standard
applications of Poincaré's [1890] Min-Max principle. We briefly sketch the
rest of the proof, starting with theorem 4 : from lemma 1, it suffices to
assess the approximation error

gNhN2,k ^

where P l' 2 dénotes the orthogonal projection mapping on the space
VN1,N2 defined by (77). Since the following décomposition holds :

uk = R Trr uk + £ £ katJ utj , (91)
i = 1, 2 y = 1

so that

i = 1,2 j>Ni

the error (90) can be written

ÉN1.s2fk= £ £ A^a.jf. (93)

The coefficients katj are computed in the same way as in theorem 1 (cf
Bourquin [1991, chap. 3]), thus we obtain

£ W " " * ' * A t I «.-(*. fr^ o < s < i (94)
t = l , 2 AiNi

where st(s, k, Nt) = ^ (uk, uu)f .

Those inequalities, together with lemma 1 and orthogonality properties of
the functions ui} yield (82), (83) and (84). Inequality (85) is a direct
conséquence of (84), of the Min-Max principle, and of Weyl's formula
which states that the y-th eigenvalue JJLJ of a self-adjoint elliptic operator of
order 2 m on a bounded domain in IRW satisfies

lm

ix. ^ Cj n when j -> + oo . (95)
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The proof of theorem 5 relies on similar arguments, except that we have
to take advantage of the following orthogonal décompositions :

1 = l , 2 y « l

and consequently

1 = 1, 2 ; = 1 +Ni

according to (78). •

Remark 3 : Theorems 4 and 5 extend immediately to any self-adjoint
coercive eigenvalue problem in variational form. Therefore, these results
apply to the case of non-homo geneous three-dimensional linearized elasticity.

5. ALGORITHMS

The algorithm of the component mode synthesis method presented in
section 3, équation (36), consists basically of five parts :

i) once the control parameters N and h are set up, compute the fixed
interface modes (A/j-, M/J) by solving problem (27) ;

ii) compute the static modes, solutions of problems (31) and (33) ;
iii) form the global stiffness and mass matrices K and M defined by (38)

and (39) ;
iv) solve the small-scale eigenvalue problem (37), of size

NT = Nl+N2-^-Nr, which yields the global eigenvalues Aj^'* and the
décomposition of the associated eigenfunctions on the family ^Nf h. Notice
that the mass matrix is full, whereas the stiffness matrix is diagonal ;

v) restaure the mode shapes uk everywhere in the domain fl.

Steps i), iii), iv) and v) appeal to standard finite element techniques. Steps
i) and sometimes ii) and iii) are the most time-consuming ones in such kind
of analysis.

The computation of the fixed interface modes is amenable to a Lanczos or
a subspace inverse power itération method (cf. Lascaux & Theodor [1986]).
Since we expect subdomains to exhibit simple geometrical characteristics,
fast solvers (FFT, multigrid...) may be used, and a clever initial guess for the
N( eigenvectors may be proposed, instead of a blind one. On the other
hand, any uniform change of the thermomechanical properties in one
subdomain leaves the corresponding fixed interface modes unchanged. In
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addition, local geometrical modifications of a given subdomain does not
alter the modes of the other ones. Thus repeated modal analysis are made
possible at a reasonable cost, allowing for structural optimization against
vibrations or buckling (cf Valid [1982]).

Step ii) may be processed by a Lanczos method or an inverse power
method using repeatedly the resolution of the source problem {Th)~~l uh —
fl\ which can be treated by various itérative techniques (cf. Agoshkov
[1989]) that usually take advantage of the natural décomposition of the
operator (Th)~~ * in a sum of two (or more) inverse Calderon operators. This
feature allows to exploite the coarse granularity of modem parallel
computer architectures. Among current researches in the field of domain
décomposition (cf. for example Bjorstad & Widlund [1986], Bramble et al.
[1986]) a new preconditioned conjugate gradient method (cf. Bourgat et al.
[1988]) seems to yield rather promissing performances (cf. Bourquin &
d'Hennezel [1992]).

An alternative approach would consist in expressing the Poincaré-Steklov
operator as a singular intégral operator by using a single or double layer
potential représentation ; inverse power techniques would basically amount
to compute repeatedly the action of such an operator on a function defined
on the interface. Therefore, the détermination of the spectrum of Poincaré-
Steklov's operators is amenable to the algorithm recently proposed by
Beylkin et al. [1989], and based on the « fast wavelet transform ». However,
the présence of corners in the subdomains may deteriorate the speed of the
algorithm, according to Coifman [19891.

Of course, a boundary element method remains a more traditional way of
tackling the problem.

Let us now turn to the method developed by Hurty [1965], Craig, and
Bampton [1968]. It is based on a different choice of static modes ; the latter
are obtained through the lifting in 12 of all the N £ basis functions that span
the space Vp ; in the case of conforming Lagrange éléments, this strategy

amounts to compute the functions (RhWrt)t = \* where the function
wr% matches a unit value at node Î and vanishes at all other nodes. This
method avoids the resolution of the eigenvalue problem (31) and step ii)
becomes very simple from the algorithmic point of view. It dépends on three
parameters Nl9 N2 and h ; mode truncation remains tied to the discreti-
zation. It is known to give accurate results and to fit easily in most finite
element codes (cf. Imbert [1979]). Nevertheless, it does not allow for mesh
re finement in large-scale computations, because the number of unknowns
NT = N l + N2 + Nr of problem (37) may rapidly become large and the mass
matrix remains full. In addition, the stiffness matrix is far from being
diagonal as in our method. Furthermore, when the number of degrees of
freedom on the interface /"increases, computing the static modes amounts
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to solve 2Nr Dirichlet problems, and forming the mass and stiffness
matrices (80) and (81) involves the compilation of at least 2(N r)

2 scalar
products as well as 2(N r) matrix vector products. In this situation, the time-
consuming steps Ui) and iv) deteriorate the computational efficiency of the
method.

On the contrary, our method leads to a more sophisticated algorithm
(because of step ii) but the latter does not deteriorate under mesh
refinement : the size N T of the final eigenvalue problem remains indepen-
dent of the mesh size. It will be shown numerically in the next section that
only few static modes are necessary to aehieve a stringent accuracy, such
that steps Ui) and iv) should remain very cheap, even in large-scale
computations. Properly preconditioned conjugate gradient algorithms may
keep the number of necessary itérations in step ii) independent of the mesh
size.

6. NUMERICAL TESTS

We assess here in relatively simple cases the quality of the approximation
rather than the speed of the algorithm that involves the various ways of
using component mode synthesis, This problem will be addressed some-
where else.

6.1. The intermediate method

In this section, numerical tests of the intermediate method are presented.
They allow first of all to discuss the sharpness of the error bounds given in
theorems 1 or 2 and second of all to détermine how many fixed interface and
static modes are necessary to aehieve a reasonable accuracy.

For that purpose, let us consider the eigenvalue problem associated with
heat diffusion through an heterogeneous medium : we define the bilinear
forms

ai{u9v) = ki\ VuVvdx V ^ ü G / / 1 ^ . ) , i = l , 2 , (97)
J/2,.

and define the form a(u, v) as in (5). Let us impose homogeneous Dirichlet
boundary conditions on d/2 and assume that kx^k2. The above theory
applies to the eigenvalue problem (9). If £lx and f22

 a r e congruent to the
unit square in M2 (cf. fig. 2), the different modes of interest for the
intermediate method are given by the following explicit formulas :

k
j = ( n „ n2) e N2 , A,, = k2 n\n\ + «f) , A , , = ^ A 2 ; ,

2 (98)
M2J = 2 sin nl IIx sin n2 Hy in fï2 , u^jix, y) = u2j(— x, y) ,
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üri = sh ln(l - x) sin 2lly in ü2 , (99)

Expressions of System (99) stem from the resolution of problem (18) by
séparation of variables.

y

Figure 2. — The tested domain.

The mass and stiffness matrices can be computed explicitely and problem
(9) with V = V N solved very easily. The approximate eigenvalues and
corresponding mode shapes are compared with the eigenpairs computed
« blindly » by means of the finite element code CESAR using about
2 000 nodes of FI-Lagrange triangles. We let the parameters N h N r vary
and fix kl = 1 and N2 = 30.

Before to elaborate on the results, let us point out that the model problem
presented above allows component mode synthesis method to exhibit some
interesting features : when the diffusivities kx and k2 are different, the global
eigenvalue problem (9) with V = H d(/2 ) does not possess explicit solutions
to our knowledge, whereas the local eigenvalue problems (2) do, as well as
(18). Furthermore, the transmission condition kx h k2— = 0 on F

dn* dn-.
forbids any high-order global regularity, but the fixed interface and static
modes are smooth up to the boundary in each subdomain.

Formula (99) proves the sharpness of the lower bounds associated with
the eigenvalues (\ri)t=\ (<ƒ• Bourquin [1991, chap. 3]). Moreover, the
functions ure are regular in F. Their harmonie liftings are also regular in
each subdomain.

Let us now comment on the numerical results. We have represented the
two first eigenfunctions (cf.fig. 3 and 4) computed with our method (fig. 3b
and 4b) for the choice Nl-S, N2 = 6, Nr-3, and with the finite element
method (fig. 3a and 4a). Since eigenfunctions obtained via both methods
have not been normalized in the same way, the reader's attention should be
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focused on their gênerai shape. Notice that their level lines possess a corner
point when they cross the interface F; this is due to the transmission
condition that implies a discontinuity of the normal derivative at this
location. The discontinuity is very well captured by component mode
synthesis, but this feature does not seem to be generic.

By looking at the « Fourier coefficients » kafj and kcxp( weighting the
décomposition of the function wf on the family &, it is possible to know
which component modes are effectively tuned. In the following table, s
dénotes various numbers inferior to 10"7.

nx n2 r

1 1.1 2.6 x 1(T2

2 s 1.5 x 1(T6 1 1.9 x 10"2 10"1

3 4 x 10"2 6.1 x 10-' 2 e s | 1
1 3 x l 0 = ! 4.9 x K T 1

4 € e 3 5.5 x 10"3 2.2 x 10"l

_ 2 F e
5 e e 4 e s

3 e e

6 1.2 x 10~2 6 x 1(T2 5 e e I L_ . 1

7 e e 6 2 x 10r3 7.6 x 1(T3

8 e s

It is noteworthy that only the first static mode is tuned for the first two
global eigenfunctions wf and u^ ; the computation of higher order eigen-
functions (up to the seventh) involves only three of them.

Eigenvalues also behave nicely ; first of ail we fix the values of
N r and N2 and let N1 vary ; the error is plotted in figure 5 as well as an
average slope in log-log scale which represents the observed numerical
convergence rate with respect to the number of fixed interface modes, that
is the value of p in some fitting curve N r -• a H . The error decays

exactly as predicted since the value of f3 is about 1.5. Based on other tests,
we can notice that the numerical convergence rate does not dépend on the
value of the diffusivities.

We also fix the value of N x and N"2, let 7Vr vary, and plot the analogous
quantities. The error decays veryfast, since in gênerai two or three of them
are sufficient to yield a stringent accuracy, as shown on figure 6 (for
kx = 1, k2 - 5).
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Figure 3a. — Finite Element solution (CESAR).

Figure 3b. — Component Mode Synthesis Solution.

Figure 3. — Levei Unes of the fïrst eigenfunction (homogeneous Dirichlet conditions).

Therefore, static mode and fixed interface mode truncation errors behave
at least as good as predicted, and may exhibit an interesting superconver-
gence phenomenon, which corresponds to the more or less rapid decay of
the functions st and er. In this respect, the function er seems to decay really
fast. In this example, the function wk defined in theorem 3 can be shown to

dwk
satisfy at least e HQQ(F) = <2/(T ' ) ; therefore, according to Bourquin

[1990a, Remark 10], the error bound associated with the static modes reads
sr(k, Nr)

iin theorem 1 instead of
)

a < 1. A more detailed

analysis of the singularities related to this problem might yield a better
convergence resuit.
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Figure 4a, — Finite Element solution (CESAR).

Figure 4b, — Component Mode Synthesis Solution.

Figure 4. — Level iines of the second eigenfunction (homogeneous Dirichlet conditions).
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Figure 5. — Error decay for the first and the fifth eigenvalue.
E : error. Nx : Number of fhted interface modes on fl v
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Figure 6. — Error decay for the first, third, and fifth eigenvalue.
E : error. Nr : Number of static modes.

6.2. The dîscretized version of the method

We intend here to test the method with component modes computed with
a finite element code. Again, we do not focus on the algorithm but rather on
the quality of the approximation. We consider the Laplace operator on a
unit square divided in two parts as in figure 2 ; an homogeneous Dirichlet
boundary condition is imposed everywhere except on the upper and lower
boundaries of the right subdomain, where an homogeneous Neumann
boundary condition is chosen. To our knowledge, there is no explicit
solution for any kind of mode except for the fixed interface ones. Moreover,
a singularity is expected to appear at the corners separating two boundaries
of different type. Various other cases will be presented in Bourquin &
d'Hennezel [1992J.

The approximate static modes are computed in the framework of the
program library MODULEF thanks to a Lanczos method applied to the
schur complement matrix associated with the interface. A consistent mass
matrix involving only the interface is used. The eigenpairs are computed
first globally with the finite element code CESAR (fig. 7a, and 8a), and then
by component mode synthesis (fig. 7b, and 8b) for the choice N x = N2= 8,
N r = 3. The plots confirm the good agreement between the frequencies and
mode shapes of both computations.
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Figure la. — Finite Element solution (CESAR).

Figure lb. — Component Mode Synthesis Solution (MODULEF).

Figure 7. — Level lines of the second eigenfunction (jurnp of boundary conditions).

7. CONCLUDING REMARKS

In this paper, the problem of deriving error bounds for the component
mode synthesis method on arbitrary domains is addressed. This attempt has
suggested to introducé a new method, amenable to numerical analysis in a
natural way ; the method can be expressed in a continuous framework, and
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- 43.40

Figure 8a. — Finite Element solution (CESAR).

- 43.63

Figure Sb. — Component Mode Synthesis Solution (MODULEF).

Figure 8. — Level lines of the third eigenfunction (jump of boundary conditions).

extends, once discretized, the classical Hurty, Craig and Bampton one, that
is also analysed hère. Error bounds dictate a strategy to choose the different
component modes to be taken into account. Apart from those advantages
regarding the component mode synthesis theory, the proposed method
appeals to a number of modes independent of the discretization parameter
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and proves numerically attractive. S ome spécifie aspects of the preceding
analysis as well as open questions are worth to be highlighted :

i) The properties of the partial differential équation governing the
évolution of the structure are deeply involved, in particular through Weyl's
formula, spectral properties of Poincaré-Steklov's operators, and the theory
of regularity up to the boundary in the subdomains, which obviously lack of
smoothness. Therefore, it seems necessary to introducé an intermediate
method. This approach has been adopted in several contributions to that
field (cf Jezequel [1985], Morand [1977], Morand & Ohayon [1979], Valid
[1982]). However, it is possible to dérive error bounds directly for the
classical Hurty [1965], Craig, and Bampton [1968] method in its discretized
version.

ii) On the other hand, it seems very important for the potential
applicability of this kind of method, that the définition and the number of the
different component modes, and consequently the mode truncation error, do
not depend on the mesh size, or more generally on the finite element or
Galerkin method used in the practical computation. As a matter of fact, this
feature allows for an intrinsic définition of the intermediate component
mode synthesis method, and thus for a large versatility of the real method :
various algorithms and approximation methods may be used. In particular,
mesh refinements are made possible in the vicinity of the interfaces, whereas
they are forbidden when using the classical fixed interface method, that
would rapidly become to expensive (cf Imbert [1979]).

iii) Most domain décomposition methods reduce a global problem posed
over a domain £1 to a problem posed on the interface and that can be solved
either directly by inverting the Schur complement matrix or iteratively
thanks to repeated computations involving each time only one subdomain.
In any case, the problem solved is equivalent to the initial one. By contrast,
a component mode synthesis method appears more clearly as an approxi-
mation proces s, eventhough it leads to an algorithm that takes advantage of
the domain décomposition. Thus it should be emphasized that the final
small-scale eigenvalue problem is not equivalent to the global one, but
theorems 1, 2, 3, 4, and 5 enable to control the approximation error. Of
course, both types of algorithm are amenable to parallel computations.

iv) The method also applies to the eigenvalue problems related to non-
homogeneous elastic structures described by various models (cf Bourquin
[1991]).

v) Numerical tests indicate that the decay rate of the functions
sr(a, k, Nr) may be rather high. The question of a priori estimating those
quantities remains open. In particular, it would be interesting to characterize
the domains for which a superconvergence phenomenon regarding the static
modes does occur.
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vi) Our choice of static modes has been introduced mainly for technical
reasons. Is it an optimal choice with respect to the number of modes to be
taken into account ? This problem could be tackled in the light of optimal
Galerkin approximation {cf. Aubin [1972]).

vii) Component mode synthesis relies on the basic assumption that global
vibrations of a structure should behave just like local ones, thus leading to
the idea of performing a local (non-harmonie) Fourier analysis in the space
variable. Therefore, Hurty's method bears a deep ressemblance to the
wavelet analysis, that has been introduced many years thereafter in signal
processing.

viii) Non-conforming extensions can be thought of : for example, the
eigenfunctions of each inverse Calderon's operator <&i9 that are easy to
compute, could be lifted in the corresponding subdomain Oh and used as
basis of static modes. The coupling between substructures should be
achieved through some variational identity acting on the traces of the test
functions {cf. Bernardi et al. [1989a, b]), in the spirit of minimum weighted
residual techniques. The method of « intermediate problems » {cf. Weins-
tein & Stenger [1972]) should be advocated because it constitutes an
interesting mathematical background of non-conforming component mode
synthesis methods {cf. Jezequel [1985]). The numerical analysis of the latter
may appeal to the abstract theory developed in Mercier et al. [1981], but lies
beyond the scope of this paper.

ACKNOWLEDGEMENTS

I wish to thank Professor Philippe Ciarlet for having suggested me to
analyse the convergence of component mode synthesis methods. I also take
pleasure in thanking Frédéric d'Hennezel who has carefully implemented
the discretized version of the proposed component mode synthesis method
in the framework of the program library MODULEF, and who realized part
of the tests herein presented (fig. lb and Sb). Last, but not least, particular
thanks are due to Professor Jacques-Louis Lions for his expert comments
and his interest.

REFERENCES

V. I. AGOSHKOV [1988], Poincaré-Steklov' s operators and domain décomposition
methods infinité dimensional spaces, in R. Glowinski, G. H. Golub, J. Periaux,
eds, Proceedings of the lrst international symposium on décomposition
methods for partial differential équations, Paris, SIAM editor, Philadelphia
1988.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



COMPONENT MODE SYNTHESIS OF SECOND ORDER OPERATORS 421

J. P. AUBIN [1972], Approximation of Elliptic Boundary-Value Problems, Wiley-
Interscience, New-York, 1972.

M, AUFRANC [1990], Modeling of junctions between three-dimensional and two
dimensional nonlinearly elastic structures, to appear, 1990.

I. BABUSKA, J. E. OSBORN [1990], Eigenvalue problems, to appear in Handbook of
Numerical Analysis, North Holland, P. G. Ciarlet and J. L. Lions editors, 1990.

M, BERNADOU, S. FAYOLLE, F. LENE [1988], Numerical analysis of junctions
between plates, rapport I.N.R.I.A. n° 865» juillet 1988.

C. BERNARDI, Y. MADAY, T. PATERA [1989a], A new nonconforming approach to
domain décomposition : the mortar element method ; Report 89027 of the
Laboratoire d'Analyse Numérique de l'université Pierre et Marie Curie.

C. BERNARDI, Y. MADAY, C. MAVRIPLIS, T. PATERA [19896], Nonconforming
coupling of variational discretizations, Part I : The mortar element method
applied to spectral discretizations, to appear in the Proceedings of the Seventh
International Conference on Finite Element Methods in Flow Problems,
Huntsville, 1989.

G. BEYLKIN, R. COIFMAN, V. ROKHLIN [1989], F ast wavelet transform and
numerical algorithms IL Preprint.

P. E. BJORSTAD, O. B. WIDLUND [1986], Itérative methods for the solution of elliptic
problems on régions partitioned into substructures. SIAM J. Numer. Anal. 23,
1097-1120.

J. F. BOURGAT, R. GLOWINSKI, P, LE TALLEC [1988], Formulation variationnelle et
algorithme de décomposition de domaines pour les problèmes elliptiques, C. R.
Acad. ScL Paris, t. 306, Série I, p. 569-572, 1988.

F. BOURQUIN [1989], Synthèse modale d'opérateurs elliptiques du second ordre,
C. R. Acad. ScL Paris, t. 309, Série I, p. 919-922, 1989.

F. BOURQUIN [1990a], Analysis and comparison of several component mode
synthesis methods on one-dimensional domains, Numer. Math., 58, 11-34.

F. BOURQUIN [1990&], Domain décomposition and eigenvalues of second order
operators : convergence analysis, to appear.

F. BOURQUIN [1991], Domain décomposition and eigenvalue approximation for
elastic multi-structures, Doctoral dissertation, Université P.-M. Curie.

F. BOURQUIN, P. G. CIARLET [1989], Modeling and justification of eigenvalue
problems for junctions between elastic structures, J, Funct. Anal., vol, 87, 2,
p. 392-427, dec. 1989.

F. BOURQUIN, F. D'HENNEZEL [1992], to appear in Comput. Math. AppL Mech.
Eng.

J. H. BRAMBLE, J. E. PASCIAK, A. H. SCHATZ [1986], An itérative method for
elliptic problems on régions partitioned into substructures. Math. Comp. 46, 361-
369.

A. P. CALDERON [1963], Boundary value problems for elliptic équations, in « Proc.
Joint Soviet-American Symp. on Part, Diff. Eqns. » p. 1-4, Novosibirsk, 1963.

F. CHATELIN [1983], Spectral Approximation of Linear Operators, Academie Press,
1983.

vol. 26, n° 3, 1992



422 F. BOURQUIN

P. G. CIARLET [1978], The finite element method for elliptic problems, North
Holland, Amsterdam, 1978.

P. G. CIARLET [1987], Modeling and numerical analysis of junctions between elastic
structures, to appear in Proceedings, First International Conference on Indus-
trial and Applied Mathematics (Paris, June 29-July 3, 1987).

P. G. CIARLET, H. LE DRET, R. NZENGWA [1987], Modélisation de la jonction entre
un corps élastique tridimensionnel et une plaque, C. R. Acad. Sci. Paris, Série I,
305, 55-58, 1987.

P. G. CIARLET, H. LE DRET, R. NZENGWA [1989], Junctions between three-
dimensional and two-dimensional linearly elastic structures, J. Math. Pures
AppL, 68, 261-295.

P. G. CIARLET, M. H. SCHULTZ, R. S. VARGA [1968], Numerical methods of high-
order accuracy for non-linear boundary value problems, III : Eigenvalue
problems. Numer. Math., 12, 120-133, 1968.

COIFMAN [1989], private communication.
R. CRAIG, M. C. C. BAMPTON [1968], Coupling of substructures for dynamic

analysis, A.I.A.A. J. vol. 6, p. 1313-1321, 1968.
R. R. CRAIG Jr. [1985], A review of time domain and frequency domain component

mode synthesis methods, joint ASCE/ASME mechanics conference, Albuquer-
que, New Mexico, June 24-26, A.M.D. vol 67, 1985.

M. DAUGE [1989], Problèmes mixtes pour le Laplacien dans des domaines
polyédraux courbes, C.R. Acad. Sci. Paris, t. 309, Sériel, p. 553-558, 1989.

R. DAUTRAY, J. L. LIONS [1985], Analyse Mathématique et Calcul Numérique pour
les Sciences et les Techniques, vol. 1, Masson, 1985.

Ph. DESTUYNDER [1989], Remarks on dynamic subsiruciuring, Eur. J. Mech.
A/Solids, 8, n° 3, 201-218.

M. DoOR [1989], On the discretization of Interdomain coupling in elliptic boundary
value problems, Domain décomposition methods, T. Chan, R. Glowinski,
J. Périaux, O. Widlund editors, SIAM, proceedings of the second international
symposium on domain décomposition methods, Los Angeles, California, Janv.
1988.

R. J. GIBERT [1988], Vibrations des Structures, Interactions avec les fluides, Sources
d'excitations aléatoires, cours de l'école d'été d'analyse numérique CEA INRIA
EDF, 1986, collection de la Direction des Etudes et Recherches d'Electricité de
France, Eyrolles, 1988.

P. GRISVARD [1985], Elliptic Problems in Non-Smooth Domains, Pitman, London,
1985.

G. GRUBB [1977], Boundary problems for Systems of partial differential operators of
mixed order, J. Funct. Anal., 26, 131-165, 1977.

W. C. HURTY [1965], Dynamic analysis of structural Systems using component
modes, A.I.A.A. J., vol. 4 (4), p. 678-685, 1965.

J. F. IMBERT [1979], Calcul des structures par éléments finis, Cépadues, 1979.
L. JEZEQUEL [1985], Synthèse modale : théorie et extensions, thèse d'état, université

Claude Bernard, 1985.
M2 AN Modélisation mathématique et Analyse numérique

Mathematical Modelling and Numerical Analysis



COMPONENT MODF SYNTHESIS OF SECOND ORDER OPERATORS 423

P. LASCAUX, R. THEODOR [1989], Analyse Numérique Matricielle Appliquée à VArt
de l'Ingénieur, Masson, Paris, 1986.

H. LE DRET [1987], Modélisation d'une plaque pliée, C. R. Acad. Sci. Paris, Sér. I,
305, 581-573, 1987.

K. LEMRABET [1977], Régularité de la solution d'un problème de transmission, J.
Math. Pures Appl., 56, 1-38, 1977.

K. LEMRABET [1978], An interface problem in a domain ofM3, J. Math. Anal. Appl.,
63, 549-562, 1978.

L. MEIROVITCH [1980], Computational Methods in Structural Dynamics, Sijthoff &
Noordhoff, 1980.

B. MERCIER, J. E. OSBORN, J. RAPPAZ, P. A. RAVIART [1981], Eigenvalue
approximation by mixed and hybrid methods, Math. Comp., 36, p. 427-453,
1981.

H. MORAND [1977], Méthodes de détermination approchée des modes propres de
vibration en calcul des structures ; sous-structuration dynamique, ONERA R.T.
n° 2 I 3238 RY OOOR, 1977.

H. MORAND, R. OHAYON [1979], Substructure variational analysis of the vibrations
of coupled fluid-structure Systems. Finite element results, Internat. J. Numer.
Methods Engrg., vol. 14, 741-755, 1979.

H. PoiNCARÉ [1890], Sur les équations aux dérivées partielles de la physique
mathématique, Amer. J. Math. 72, 211-294, 1890.

G. STRANG, G. FIX [1973], An Analysis of the Finite Element Method, Prentice Hall,
Series in automatic computation, 1973.

A, E. TAYLOR [1958], Introduction to Functional Analysis, Wiley, New-York, 1958.
R. VALID [1977], La mécanique des Milieux continus et le calcul des structures,

Collection de la Direction des Etudes et Recherches d'Électricité de France,
Eyrolles, 1977.

R. VALID [1982], Une méthode de calcul des structures au flambage par sous-
structuration et synthèse modale, C.R. Acad. Sci. Paris, t. 294, série II, p. 299-
302.

R. VALID, R. OHAYON [1974], Influence du ballottement dans les réservoirs des bouts
d'ailes sur les modes propres de vibration d'un avion, Rech. Aérospat., 1974-75,
p. 319-325.

A. WEINSTEIN, W. STENGER [1972], Methods of Intermediate Problems for
Eigenvalues. Theory and Ramifications, Academie Press, New-York and
London, 1972.

vol. 26, n° 3, 1992


