Curvature computations on surfaces in n-space
ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 1, pp. 95-112.
@article{M2AN_1992__26_1_95_0,
     author = {Chuang, J.-H. and Hoffmann, Ch. M.},
     title = {Curvature computations on surfaces in $n$-space},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {95--112},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {26},
     number = {1},
     year = {1992},
     mrnumber = {1155002},
     zbl = {0752.65104},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1992__26_1_95_0/}
}
TY  - JOUR
AU  - Chuang, J.-H.
AU  - Hoffmann, Ch. M.
TI  - Curvature computations on surfaces in $n$-space
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1992
SP  - 95
EP  - 112
VL  - 26
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1992__26_1_95_0/
LA  - en
ID  - M2AN_1992__26_1_95_0
ER  - 
%0 Journal Article
%A Chuang, J.-H.
%A Hoffmann, Ch. M.
%T Curvature computations on surfaces in $n$-space
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1992
%P 95-112
%V 26
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1992__26_1_95_0/
%G en
%F M2AN_1992__26_1_95_0
Chuang, J.-H.; Hoffmann, Ch. M. Curvature computations on surfaces in $n$-space. ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 1, pp. 95-112. http://www.numdam.org/item/M2AN_1992__26_1_95_0/

[1] E. L. Allgower and S. Gnutzmann (1987), An Algorithm for Piecewise Linear Approximation of Implicity Defined 2-Dimensional Surfaces, SIAM J. Num. Anal. 24, 452-469. | MR | Zbl

[2] B. Buchberger (1985), Gröbner Bases : An Algorithmic Method in Polynomial Ideal Theory, in Multidimensional Systems Theory, N.L. Bose, éd., D. Reidel Publishing Co., Dordrecht, Holland; 184-232. | MR | Zbl

[3] B. Buchberger, G. Collins and B. Kutzler (1988), Algebraic Methods for Geometric Reasoning, Ann. Rev. Comp. Sci, 3, 85-120. | MR

[4] A. Cayley (1848), On the Theory of Elimination, Cambridge and Dublin Math. J. 3, 116-120.

[5] E.-W. Chionh (1990), Base Points, Resultants, and the Implicit Representation of Rational Surfaces, PhD Diss., Comp. Sci., Univ. Waterloo, Canada.

[6] V. Chandru, D. Dutta C. Hoffmann (1990), Variable Radius Blending with Cyclides, in Geometric Modeling for Product Engineering, K. Preiss, J. Turner, M.Wozny, eds., North Holland, 39-58.

[7] J. Chou, E. Cohen (1989), Constant Scallop Height Tool Path Generation, Rept. UUCS-89-011, Comp. Sci., Univ. Utah.

[8] Jung-Hong Chuang (1990), Surface Approximations in Geometric Modeling, PhD Diss., Comp. Sci., Purdue University.

[9] J.-H. Chuang and C. M. Hoffmann (1989), On Local Implicit Approximation and lts Applications, ACM Trans. Graphics 8, 298-324. | Zbl

[10] S. Coquillart (1987), Computing offsets of B-spline curves, Comput. Aided Design 19, 305-309. | Zbl

[11] D. Dutta and C. M. Hoffmann (1990), A Geometric Investigation of the Skeleton of CSG Objects, Report CSD-TR-955, Comp. Sci., Purdue Univ.

[12] R. Farouki (1986), The Approximation of Nondegenerate Offset Surfaces, Comp. Aided Geom. Design 3, 15-43. | Zbl

[13] R. Farouki and C. Neff (1989), Some Analytic and Algebraic Properties of Plane Offset Curves, Rept. RC 14364, IBM Yorktown Heights. | MR

[14] C. M. Hoffmann (1989), Geometric and Solid Modeling, An Introduction, Morgan Kaufmann Publ., San Mateo, Cal.

[15] C. M. Hoffmann (1990), A Dimensionality Paradigm for Surface Interrogation, to appear in Comput. Aided Geom. Design. | MR | Zbl

[16] C. M. Hoffmann (1990), Algebraic and Numerical Techniques for Offsets and Blends, in Computations of Curves and Surfaces, W. Dahmen, M. Gasca,C. Micchelli, eds., Kluwer Acad. Publ., 499-528. | MR | Zbl

[17] C. M. Hoffmann and M. J. O'Donnell (1982), Programming with Equations, ACM Trans. Progr. Lang 4, 83-112. | Zbl

[18] J. Hoschek (1985), Offset curves in the plane, Comput. Aided Design 17, 11-82.

[19] J. Hoschek (1988), Spline approximation of offset curves, Comput. Aided Geom. Design 5, 33-40. | MR | Zbl

[20] J. Li, J. Hoschek, E. Hartmann (1990), A geometrical method for smooth joining and interpolation of curves and surfaces, Comput. Aided Geom. Design 7. | MR

[21] B. O'Neill (1966), Elementary Differential Geometry, Academic Press. | MR | Zbl

[22] B. Pham (1988), Offset approximation of uniform B-splines, Comput. Aided Design 20, 411-414. | Zbl

[23] J. Pegna (1988), Exact second order continuous interactive surface blending with variable sweep Geometric modeling, J. Offshore Mech. Aretic Engrg.

[24] J. Pegna and F.-E. Wolter (1989), A Simple Practical Criterion to Guarantee Second-Order Smoothness of Blend Surfaces, Proc. 1989 ASME Design Autom. Conf-, Montreal, Canada.

[25] J. Rossignac, A. Requicha (1986), Offsetting operationsin solid modeling, Comput. Aided Geom. Design 3, 129-148. | Zbl

[26] S.E.O. Saeed, A. De Pennington, J. R. Dodsworth (1988), Offsetting in geometric modeling, Comput. Aided Design 20, 67-74. | Zbl