@article{M2AN_1992__26_1_77_0, author = {Micchelli, Ch. A.}, title = {Curves from variational principles}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {77--93}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {1}, year = {1992}, mrnumber = {1155001}, zbl = {0748.65016}, language = {en}, url = {http://www.numdam.org/item/M2AN_1992__26_1_77_0/} }
TY - JOUR AU - Micchelli, Ch. A. TI - Curves from variational principles JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1992 SP - 77 EP - 93 VL - 26 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1992__26_1_77_0/ LA - en ID - M2AN_1992__26_1_77_0 ER -
Micchelli, Ch. A. Curves from variational principles. ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 1, pp. 77-93. http://www.numdam.org/item/M2AN_1992__26_1_77_0/
[1] Differential Geometry of Curves and Surfaces, Prentice Hall, 1976. | MR | Zbl
,[2] Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic Press, 1988. | MR | Zbl
,[3] Interpolation with Internal and Point Tension Controls Using Cubic Weighted v-splines, ACM Trans. Math. Software 13 (1987), pp. 68-96. | MR | Zbl
,[4] Knot Selection for Parametric Spline Interpolation, in Mathematical Methods in Computer Aided Geometric Design, eds., T. Lyche and L. L. Schumaker, Academic Press, 1989, pp. 261-271. | MR | Zbl
and ,[5] Recent Advances in the Approximation of Surfaces from Scattered Data, in Topics in Multivanate Approximation, eds., C. K. Chui, L. L. Schumaker, and F. I. Utreras, Academic Press, Boston, 1987. | MR | Zbl
,[6] Minimum Norm Extremals in Function Spaces with Applications to Classical and Modern Analysis, Lecture Notes in Math. 479, Springer-Verlag, Berlin, 1975. | MR | Zbl
, and ,[7] Total Positivity, Vol. 1, Stanford University Press, Stanford, 1968. | MR | Zbl
,[8] Interpolation Properties of Generalized Perfect Splines and the Solutions of Certain Extremal Problems I, Trans. Amer. Math. Soc., 206 (1975), pp. 25-66. | MR | Zbl
,[9] Theory of Elasticity, Pergamon Press, New York, 1959. | MR
, and ,[10] Variational Study of Nonlinear Spline Curves, SIAM Rev. 15 (1973), pp. 120-133. | MR | Zbl
, and ,[11] An Approach to Data Parametrization in Parametric Cubic Spline Interpolation Problems, J. Approx. Theory 41 (1984), pp. 64-86. | MR | Zbl
,[12] Smoothing and Interpolation in a Convex Set of Hilbert Space, SIAM. J. Sci. Stat. Comp. 9 (1988), pp. 728-746. | MR | Zbl
and ,[13] Some Piecewise Polynomial Alternatives to Spline Under Tension, in Computer Aided Geometric Design, eds., R. E. Barnhill, and R. F. Riesenfeld, Academic Press (1974), pp. 209-235. | MR
,[14] Best Interpolation with Free Nodes by Closed Curves, in Mathematical Methods in Computer Aided Geometric Design, eds., T. Lyche, and L. L. Schumaker, Academic Press, 1989, pp. 549-559. | MR | Zbl
,[15] Vector-valued Lg-splines, J. Math. Anal., Appl. 70 (1979), pp. 505-529. | MR | Zbl
, and ,