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PROBLEMS WITH DEFINING BARYCENTRIC COORDINATES
FOR THE SPHERE

by J. L. BROWN (l) and A. J. WORSEY (*)

Abstract. — We consider the problent of assigning barycentric coordinates for triangles on the
sphère S2. We show that a direct gêneralization of barycentric coordinates in the plane to geodesie
triangles on S2 is not possible. Geodesie triangles are the « natural » choicefor the sphère and our
results indicate that the techniques for triangular Bézier patches over the plane do not generalize
to S2. Ifwe relax the condition that the spherical triangles have edges that are geodesics, then it is
possible to define barycentric coordinate Systems on the sphère. This is done by constructing area
preserving maps from R2 to S2. However, the triangles so generated are inevitably distorted, as
shown by examples.

Résumé. — Coordonnées barycentriques pour la sphère. Nous considérons le problème de
construire des coordonnées barycentriques pour les triangles sur la sphère S2 ; nous montrons
qu'une généralisation directe des coordonnées barycentriques planes aux triangles géodésiques
sur S2 n 'est pas possible. Les triangles géodésiques sont un choix « naturel » pour la sphère, notre
résultat indique que les techniques des carreaux de Bézier triangulaires plans ne se généralisent
pas à S2. Si nous abandonnons la condition où les triangles sphériques ont pour côtés des
géodésiques, il est possible alors de définir des coordonnées barycentriques sur la sphère. Ceci est
réalisé par la construction d'applications conservant la surface de R2 dans S2. Néanmoins les
triangles engendrés sont déformés, comme le montrent les exemples.

1. INTRODUCTION

The problem of defining surfaces on surfaces is one of some importance in
Computer Aided Geometrie Design (CAGD), as illustrated by the papers
of Barnhill (1985) and BarnMll & Ou (1990), only two of the many
références to this whole area. In particular, the problem of defining curves
and surfaces over the sphère is clearly pertinent, since it allows us to address
issues where the need is to model phenomena using data taken from the
surface of the Earth. Interpolation over the sphère is therefore clearly
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38 J. L. BROWN, A. J. WORSEY

important and it is a problem that has been considered by, amongst many
others, Lawson (1984), Renka (1984), Nielson and Ramaraj (1987), Nielson
(1989), Pottmann and Eek (1990), and Foley (1900a, b).

Nielson (1989) considered the problem of generalizing the geometrie
construction of the de Casteljau algorithm for Bézier curves ; Boehm et al
(1984, p. 8) (and, analogously, the knot insertion algorithm for 5-spline
curves ; Boehm (1980)), for constructing smooth piecewise curves over the
sphère S2. The idea is to defïne a polygon composed of geodesie line
segments on the sphère and generate a curve from this polygon by repeated
geodesie interpolation at a parameter value t. This approach is, arguably,
the natural one for deflning « Bézier curves on S2 ».

At the time, Nielson (1989) also addressed the problem of extending nis
approach for curves on S2 to defïne triangular patches over the sphère.
Triangular Bézier patches are a fundamental tooi in CAGD ; see Boehm et
al (1984), Farin (1986, 1989), offering as they do, elegant geometrie
constructions for surfaces. It is therefore entirely reasonable to want to
generalize them to the case where S2 is the domain, given the numerous
applications to surface on surface problems.

For surfaces defined over «-simplices in Rn, Bernstein-Bézier techniques
hinge fundamentally upon the use of barycentric coordinates. It follows that
as a precursor to defîning triangular Bézier patches over the sphère, we
need to be able to define such a coordinate System for domain triangles on
S2. In particular, since geodesie triangles are the only ones that are intrinsic
to the sphère, we would like to defïne a barycentric coordinate System for
such triangles. That is, triangles whose vertices^ls p2, p$ on S2 (not ail lying
on the same great circle) are pairwise connected by three geodesics, that is,
sections of great circles.

The main point to this paper is to prove, in Section 2, that it is impossible
to define barycentric coordinate Systems for geodesie triangles on S2 that are
consistent (see Définition 2.1), and which reduce, on edges, to Nielson's
(1989) définition of comparing ratios of geodesie lengths. Both of these
(very mild) conditions are defined in Section 2 and are drawn directly from
fundamental properties of barycentric coordinates in the plane. They
merely serve to give some minimal structure to the problem of defîning
barycentric coordinates for geodesie triangles.

Given the main (négative) resuit of Section 2, we focus, in Section 3, on
the question of defining barycentric coordinates for triangles on S2 obtained
by projections. That is, by considering an area preserving map r : R2 ~> S2,
which imposes the barycentric coordinate System for a triangle in the plane
onto a triangle Tp on S2. Such maps have been used, for example, by Foley
(1990a), when considering interpolation problems on the sphère. For this
reason, we consider the nature and properties of such a map r and
concentrate, in particular, on two special cases.
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DEFINING BARYCENTRIC COORDINATES FOR THE SPHERE 39

Of course, the problem with defining barycentric coordinates by projec-
tion is that the resulting triangle Tp on S2 cannot, from the results of
Section 2, be a geodesie triangle and any projection scheme must produce
seriously « deformed » triangles somewhere on S2. Precisely where, dépends
largely upon the ab initio choices for a north pôle, south pôle, and a mie of
longitude Connecting them— an «international date line» (i.d.l.)- We
conclude, in Section 4, by examining this problem for the two spécifie
projections considered in Section 3, presenting some graphical results which
show that defining barycentric coordinates via projection is an unreasonable
approach to the problem.

2. BARYCENTRIC COORDINATE SYSTEMS FOR GEODESIC TRIANGLES ON S1

In this section we show that there is no way of assigning barycentric
coordinates to geodesie triangles on the sphère S2, which inherit the
properties of barycentric coordinates for planar triangles. To this end, let
p b p2, and p3 be the vertices of a unique, non degenerate, geodesie triangle
T on S2, so that the edge, CI5 of T opposite vertex p, ; i = 1, 2, 3, is a
geodesie (part of a great circle) Connecting p, and pky i,j, k, distinct ; see
figure 2.1.

Figure 2.1. — pv p2, and p3, are the vertices of a geodesie triangle T on the sphère S1.
The edge, C,., opposite vertex p: is the geodesie Connecting the other two vertices.

In order to consider the problem of defining barycentric coordinates on
T we must first of all defïne precisely what that means.

DEFINITION 2.1 : A System of barycentric coordinates on T is a one-to-one
correspondence between points p G T and ordered triples of real numbers
(bu b2, b3) such that :

a) 0 =£ bx^ 1 ; i = 1, 2, 3, and bi+b2 + b3 = 1,
and

b) if p G C; (so that b( - 0), bj = d(pk,p )/rf(pk, p,) ; ij, ke {1, 2, 3 }

vol. 26, n° 1, 1992



40 J- L BROWN, A. J WORSEY

all distinct, where d(pk, q ) is the geodesie distance from pk to q, measured
along the geodesie Cr

Note : Condition b) in Définition 2.1 ensures that on the edge of a
geodesie triangle, barycentric coordinates reduce to ratios of geodesie
lengths. This is totally analogous to the situation for a triangle in the plane
and is consistent with Nielson's (1989) requirement for constructing smooth
curves on the sphère.

This définition takes into account only one geodesie triangle T. From the
point of view of trying to defïne smooth surfaces over the sphère, we would
need to consider a domain composed of several geodesie triangles.
The refore, in order for a barycentric coordinate System on T to be useful,
we need to be able to assign coordinate Systems to subtriangles of
Tthat are « consistent » with the coordinates on Titself. More precisely, we
have the following définition.

DEFINITION 2.2 : Let Tl e T be a geodesie triangle on S2 with vertices
Pi» P2> Pi where, with respect to T, pj has barycentric coordinates
(Pitu bi,2> ^,3)* A barycentric coordinate system on T1 is consistent with that
on T if for ail p e T1

bi = *î*i, , + *2*2fI +b\bXl ; i = 1,2,3,

where (bhb2,b3) and {b\3b\,b\) are, respectively, the barycentric coordi-
nates of p with respect to the triangles T and T1.

Given the (minimal) structure for a barycentric coordinate system on
geodesie triangles on S2 imposed by Définitions 2.1 and 2.2, we are in a
position to present the following resuit, the main one of this paper.

THEOREM 2.3 : Let 0 be any open subset o f S2. It is impossible to define a
scheme for assigning a barycentric coordinate system for every geodesie
triangle I c O , so that if T1 and T2 are two such triangles, the barycentric
coordinate Systems on each are consistent.

Proof : Let 0 be an open subset of S2 and suppose that there does exist an
atlas of barycentric coordinate Systems on 0. Further, let T be a non
degenerate geodesie triangle in 0 with vertices p b p2, p3, and its own System
of barycentric coordinates (bu b2, b3).

We claim that {p e T:p — (bu 0.5, b 3)} is the geodesie L, e T Connect-
ing the two points x = (0.5, 0.5, 0 ) and y = (0, 0.5, 0.5 ) ; see figure 2.2.

To justify this claim, let T1 ç T dénote the geodesie triangle with vertices x,
P2̂  y- By assumption, this subtriangle has its own barycentric coordinate
system (b\, b2\ b\) with respect to these vertices and in terms of this System
L = {(blO,bl

3)}.
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DEFINING BARYCENTRIC COORDINATES FOR THE SPHERE 41

P2

y

Figure 2.2. — pv p2, and py are the vertices of a geodesie triangle, x and y are the midpoints
of edges C3 and C, respectively, and X is the geodesie joining them.

Frorn the consistency condition, it follows that

bx = 0 . 5 * 1 ,

b2 = 0.5 bl + b± +0.5 b\,

b3 = 0.5bl
3.

Therefore, in terms of the barycentric coordmate System {bu b2, b3) for
T, a point p is on L if and only if b2 = 0.5 b \ + 0.5 b \ = bx + b3, since, on L,
b\ = 0. However, since bx + b2 + b3 = 1, the condition &2 = *i + *3 is
equivalent to Z>2 = 0.5. Therefore, {p = (bu b2, b3) e T: b2 = 0.5} is the
geodesie L as claimed.

Now, let z be a point on C2, the edge of the triangle T Connecting
pt and p3 and let p be the intersection of the geodesie from p2 to z with the
geodesie L ; see figure 2.3.

Figure 2.3. — Given the setup of figure 2.2, z is a fixed yet arbitrary point on the edge
C2 opposite vertex pv The geodesie joining p2 and z intersects the geodesie L at the

point p.

If T2 is the geodesie triangle with vertices z, p2, p3, then, with respect to
these vertices, p has barycentric coordinates (6 f, b2i b\), whilst with respect
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42 J. L. BROWN, A. J. WORSEY

to the vertices pl5 p2, p3, of the macro triangle T, p has barycentric
coordinates (bu 0.5, b 3). Looking at the second barycentric coordinate, we
have, using the consistency condition for T2 Œ T,

0.5 = bf(O) + ô|( l) + èf(O). (2.1)

Therefore, in terms of the triangle T2, the geodesie L is characterized by the
équation

b\ = 0.5 . (2.2)

From Définition 2.1 this means that p must be the midpoint of the
geodesie from p2 to z. However, this is not possible since L and
C2 are geodesics and this contradiction complètes the argument.

This final assertion is obvious in the case Pï and p3 are on the equator,
p2 is the north pôle, and the points x, y are both on the 45° N line of latitude,
because then the line

L = {(t, 0.5, 0.5 - t) : 0 ^ t ^ 0.5 }

must be on the 45° N line of latitude since ail points of L must be equidistant
from the north pôle and the equator. However, that line is clearly not a
geodesie on S2, contradicting an earlier conclusion about L. In the gênerai
case for a triangle J'with vertices p b p2, p3, in arbitrary position, the proof
of the assertion is a straightforward, but tedious, aigebraic caicuiation. It is
omitted for the sake of brevity. Q.E.D.

This négative resuit is the main one of this paper. Since geodesie triangles
are the only ones intrinsic to the sphère, we feel that there is very little
chance that the methods for triangular Bézier patches can be reasonably
extended from R2 to S2. That said, it is worth examining the possibility of
generating coordinate Systems on S2 by other means. In particular, by
looking at barycentric coordinates for a planar triangle and seeing how these
are affected by projections from R2to S2. This is the question we consider in
the remainder of the paper.

3. BARYCENTRIC COORDINATE SYSTEMS FOR S2 USING PROJECTIONS

Given three point on S2 that are linearly independent as vectors in
R3, we would like to describe the points of the resulting geodesie triangle in
terms of barycentric coordinates. The resuit of Theorem 2.3 states that this
cannot be done in a consistent way, but there are alternative methods for
defining barycentric coordinate Systems for « triangles » with edges that are
not geodesics.
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Specifîcally, one approach is to choose a map

„ . ni çl /-} i \
r . K - • ù {JA)

so that the vertices of a triangle T G R2 map to the given points on
S2, and use the natural barycentric coordinate System on T to describe points
of r(T) on the sphère.

The problem with such an approach is that in gênerai the edges of
r(T) are not geodesie, so that the « triangle » r(T) looks distorted. In this
Section we discuss the properties of two particular choices of the map
r in (3.1). In both cases, there is distortion in the « triangle » r(T), which in
certain situations is unacceptably severe.

3.1. Area Preserving Maps from R2 to -S2

It is not possible to preserve length when mapping R2 to S2. In f act, if 0 is
any open set in R2, then there is no length preserving map r : 0 —> S2 ; see
Berger (1987 ; section 18.4.4, p. 280). Ho wever, it is possible to impose the
constraint that a map r : R2 -» S2 be area preserving. From the point o f view
of trying to define a barycentric coordinate System for triangles on the
sphère, it is entirely reasonable to restrict our attention to maps with this
property.

Let f — f(u, v) and g = g(u,v) be functions of the variables u and
v and let r map the uv plane to S2 by

r = (sin ƒ cos g, sin ƒ sin g, cos ƒ ) .

If A is a région in the uv plane, then the area of r (A ) is

dr dr
du dv

so r preserves area if
dr

du
= 1 .

After some simplification we have

Br dr
— x —
du dV du dV du dv

Therefore, choosing the functions ƒ and g to satisfy the équation

| 9M dv 9M 9t) ' J '

makes the map (3.2) area preserving onto the sphère S1.
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We now consider two particular choices for the map r in (3.2) for which
(3.6) is satisfled.

3.2. Two spécifie area preserving maps

Let ƒ = cos" l v and g = u, so that

rx{u, v ) = ( \ / ( l ~ v2) c o s w> v O - p2) s m u>v) (3-7)

is an area preserving map from the rectangle {(w, u ) : \u\ **n, 11? | ss 1},
onto the sphère S2.

One problem with this map is that « triangles » on the sphère near the
poles can be very distorted. Another diffïculty is that the map is not locally
invertible at either pole because the preimages of the poles are not discrete.
The entire segment in the domain given by v = 1 maps onto the « north »
pole and, similarly, the line segment v = — 1 maps onto the opposite pole.

It is possible to decrease the distortion at the poles in the following way.
In (3.7) replace v by <f>(v) and u by u/<f>'(v), where <f>(v) is any
Cl function such that :

a) <f>: [ - 1 , 1 ] - » [ - 1 , 1 ] ,
and

b) 4>'(v)*0; ve ( - 1 , 1 ) .

With these changes the map (3.7) becomes

r2(u,v) = (V(l -<f>2)cos (u/4>')9 V a - ^ V n (K/^'), 0 (i>)) . (3.7a)

This map is still area preserving. ït is possible to choose <j> appropriately so
as to produce less distortion at the poles than (3.7). In particular, let
<f>(v) = sin v, to give

r2(u, v ) = (cos v cos (w/cos v), cos v sin (u/cos u), sin v) , (3.8)

which maps the région {(u,v): |w| =s TT cos t?, |u|<;7r/2} onto
S2- {poles}. However, since the limits are well defined we define
r2(0, irJ2) and r2(0, - TT/2) to be the north and south poles respectively.

The « inverse » of the map r2 is the Samson-Flamsteed (Sinusoidal)
projection; Berger (1987, p. 271). The distortion in «triangles» near the
poles is not nearly as severe as that in the map (3.7). However, there is a
considérable amount of distortion near the « international date line »
(i.d.l.), that is, r2(7r cos v, v ) ; - TT/2 < v < n/2.

In order to analyze the possible usefulness of projection schemes for
defining barycentric coordinate Systems on S2, we conclude with some
examples illustrating the types of triangles that the maps (3.7) and (3.8)
produce.
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4. EXAMPLES AND CONCLUSIONS

To use any projection method for defining barycentric coordinates on
S\ it is first of all necessary to prescribe north and south pôles as well as an
i.d.l. This is needed in order to orient the sphère and defïne any map of the
form (3.7a). This pre-processing step is, in itself, a limitation of the
approach since it imposes, a priori, an orientation of the sphère. That aside,
we now consider some of the relevant properties of the map (3.7a) for our
purposes.

The issue that arises when using a projection method is basically that of
assessing how triangles in the planar domain are distorted when mapped
onto the sphère. More precisely, given three points on the sphère (not all
lying on one great circle) how sensitive is the shape of the triangle
Tp on the sphère, determined by this projection, relative to the a priori
choice of the north and south poles, and the i.d.l. ? Ideally, we would
obviously like the boundaries of Tp to be as close to geodesics as possible,
since only geodesie triangles are intrinsic to S2 and, therefore, independent
of the choice of the date line.

In order to examine the question we consider fïve examples for triangles
on the sphère determined by the projections (3.7) and (3.8). In each case we
choose three points, pu p2, p^ on the sphère and produce the triangles
determined by these vertices and these projections. More precisely, for each
projection we produce the triangle on S2 with vertices pu p2, p3 that is the
image of the planar triangle in the domain whose vertices are the preimages
of the pu p2, Py The five examples cover cases where the points
Pu Pi* Pi> a r e chosen to be :

1) near a pôle,
2) away from the poles but near the i.d.l.,
3) at middle latitudes, away from the i.d.L,
4) near the equator, away from the i.d.l.,
5) the vertices of a geodesie triangle whose interior contains a pôle.

These cases highlight all the interesting properties of the projections (3.7)
and (3.8).

As figures 4.1a)-4.5Z>) indicate, the map (3.7) produces distortion near the
pôles, whilst (3.8) gives rise to distorted triangles near the i.d.l. In choosing
different fonctions </>(v) in (3.7a), we only succeed in repositioning the
région of the sphère where the projection method produces badly distorted
triangles. It is not possible to define a projection method of the form (3.7a)
which is free of such distortion over the entire sphère, and this is a severe
limitation to the approach of using projection methods.
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46 J. L. BROWN, A. J. WORSEY

Figure 4.là). — The distortion in the triangle under the map r, defïned by (3.7) is due to the
proximity to the po Ie. The axis of the sphère as well as the « international date line » are shown to

orient the image.

Figure 4.1 fi). — The same three vertices on the sphère as in figure 4.1a) but in this case
the triangle is generated by the sinusoidal map r2 in (3.8).

Figure 4.2a). — The three vertices on the sphère are away from the poles and the map
r, produces a « reasonable » triangle. It is similar to the geodesie triangle defined by the same

three vertices.

Figure 4.2b). — The same three vertices as in figure 4.2a) produce a severely distorted triangle
when using the sinusoidal map (3.8), bec a use of the close proximity of the vertices to the

« international date line ».
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Figure 4.3a). — The triangle vertices are away from the poles and the map (3.7) produces
a reasonable triangle in this case.

Figure 43b). — For the same three vertices as in figure 4.3a), the sinusoïdal map (3.8) also
produces a reasonable triangle, silice the vertices are not close to the « international date line ».

Figure 4.4a). — As we move further away from the poles, the map (3.7) produces triangles with
less distortion. The distorrion is minimized at the equator.

Figure 4.4b). — The vertices in figure 4.4a) are also well away from the date line. This means
that the sinusoïdal map (3.8) also performs well and in fact, the triangle shown in this case is very

similar to that in figure 4.4a).
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Figure 4.5a). — The map (3.7) does not produce a triangle whose interior contains the pole.
The geodesie triangle for the same three vertices wou ld, so that the map gives unacceptable

distort ion.

Figure 4.56). — Using the same vertices as in figure 4.5a) produces a comparable level
of distortion in the triangle generated by the sinusoïdal map (3.8).

Based on these and other examples, we feel that this method for defming
barycentric coordinates on S2 has no practical value. These results, together
with those of Section 2, suggest that it is unlikely that the theory of
triangular Bézier patches can be generalizcd directly to the sphère.
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