@article{M2AN_1992__26_1_201_0, author = {Farin, G. and Kashyap, P.}, title = {An iterative {Clough-Tocher} interpolant}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {201--209}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {1}, year = {1992}, mrnumber = {1155008}, zbl = {0756.65002}, language = {en}, url = {http://www.numdam.org/item/M2AN_1992__26_1_201_0/} }
TY - JOUR AU - Farin, G. AU - Kashyap, P. TI - An iterative Clough-Tocher interpolant JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1992 SP - 201 EP - 209 VL - 26 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1992__26_1_201_0/ LA - en ID - M2AN_1992__26_1_201_0 ER -
Farin, G.; Kashyap, P. An iterative Clough-Tocher interpolant. ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 1, pp. 201-209. http://www.numdam.org/item/M2AN_1992__26_1_201_0/
[1] Representations and approximation of surfaces. In J. R. Rice, editor, Mathematical Software III, Academic Press, 1977. | MR | Zbl
,[2] C1 quintic interpolation over triangles : two explicit representations. Internat. J. Numer. Methods Engrg., 17, 1763-1778, 1981. | Zbl
and ,[3] Twists, curvatures, and surface interrogation. Comput. Aided Design, 20 (6), 341-346, 1988. | Zbl
, , and ,[4] A survey of curve and surface methods in CAGD. Comput. Aided Geom. Design, 1 (1), 1-60, 1984. | Zbl
, and ,[5] Finite element stiffness matrices for analysis of plates in blending. In Proceedings of Conference on Matrix Methods in Structural Analysis, 1965.
and ,[6] Curves and Surfaces for Computer Aided Geometric Design. Academic Press, 1988, second édition 1990. | MR | Zbl
,[7] A modified Clough-Tocher interpolant. Comput. Aided Geom. Design, 2 (1-3), 19-27, 1985. | Zbl
,[8] Triangular Bernstein-Bézier patches. Comput. Aided Geom. Design, 3 (2), 83-128, 1986. | MR
,[9] Fairing cubic B-spline curves. Comput. Aided Geom. Design, 4 (1-2), 91-104, 1987. | MR | Zbl
, , and ,[10] Curvature and the fairness of curves and surfaces. IEEE Comput. Graph. Appl., 9 (2), 52-57, 1989.
, ,[11] Contouring a bivariate quadratic polynomial over a triangle. Comput. Aided Geom. Design, 7 (1-4), 337-352, 1990. | MR | Zbl
, ,[12] An n-dimensional Clough-Tocher element. Constr. Approx., 3, 99-110, 1987. | MR | Zbl
, ,