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FYF \CY] MATHEMATICAL MODELLING AND NUMERICAL ANAL'
W MODELISATION MATI‘MATIQIE ETMMLYSEMME
(Vol. 26, n° 1, 1992, p. 177 a 190)

CONDITIONS FOR REGULAR B-SPLINE CURVES AND SURFACES

by N. DYN (1), D. LEVIN (!) and I. YAD-SHALOM (})

Abstract. — New sufficient conditions for the regularity of a B-spline curve are derived in
terms of geometrical properties of the set of control points. These conditions exclude critical
points and self-intersections in the curve, and are extendable to tensor-product B-spline
surfaces.

Résumé. — Conditions pour la régularité des courbes et surfaces B-spline. De nouvelles
conditions suffisantes pour la régularité d’une courbe B-spline sont obtenues en termes de
propriétés géométriques de Iensemble des points de contréle. Ces conditions permettent
d’exclure les points critiques et les points d’ auto-intersections des courbes, et s’ étendent a des
surfaces produit tensoriels de B-spline.

1. INTRODUCTION

A parametric B-spline curve in R% d =1, where in practice d = 2 or
d = 3, is defined by

S(t) = ZPiBi,k(t)a kst<sn+1, 1.1
=1

where {Pi}:'= < R%and B; 1 (2) = By, (t — i) is the normalized uniform B-

spline of order k (degree kK — 1) with Kk + 1 knots: i,i + 1, ...,i + k.
Parametric B-spline curves are usually generated by binary subdivision
schemes operating on the set of initial points {Pi}:'= P thus S(#) may be

regarded as a limit curve of a subdivision scheme. For k& =3, S(¢) is
obtained by the well known Chaikin’s scheme, and for higher orders of
k see Lane and Riesenfeld [3].

We define a curve with C'! components as regular if it has a continuous
unit tangent and if it has no self-intersections. Since B; ; € Ck-2 for
k=3 the components of S(z) are C' functions but irregularities in
S(t) might occur.

(1) Beverly and Raymond Sackler Faculty of Exact Sciences, School of Mathematical
Sciences, Tel Aviv University, Tel Aviv, Israel.
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178 N DYN, D. LEVIN, I YAD-SHALOM

Clearly unit tangent discontinuities occur only in critical points, namely
points where the tangent vector vanishes. It is of interest to note that if
S(?) is a non-degenerated polynomial curve in the neighbourhood of
t, then the only possible unit tangent discontinuity is a cusp. This means that
there are two tangents in opposite directions at ¢ as is the case for the curve
@ tHatt=0.

Each unit interval [{, £ + 1] with { integer, k < { <, is in the support of
k B-splines

By ji1,6(2) .. By (1),
thus we have
¢
S = Y BOP,, te[l,l+1]. (1.2)
=0 —k+1

We show that if {Pl}f=3_k+1

order k then the curve segment in (1.2) has no self-intersections and has no
critical points, thus it is a regular curve.

satisfy the following regularity condition of

DEFINITION 1.1: A set of points Q := {Qz},k=
condition of order k, k=3, if

, satisfies the regularity

conv ({Q,}/_ ) Nconv ({Q)}F_ )=, rcW,
where
{%} s k even ,
k= (1.3)
{k—l k+1 } k odd
2 b 2 ’ .

Here conv (Q := {Qj}f= |) denotes the convex hull of Q, given by

¢
Za1=l, a,=0, j=1,.,0%}. @149

J=1

¢
conv (Q) = [Z a, Q,

=1

In RY conv (Q) is a convex polytope and in particular it is a polygonal
area in R? and a polyhedron mn R> Since two convex polytopes in
R3(R?) have an empty intesection if and only if they are strictly separated by
a plane (line), linear programming methods can be used to verify the
regularity condition (see Edelsbruner [2]).

The regularity condition extends the results of Lau [4] where the control
points are required to turn through an angle of at most = which is equivalent

M? AN Modéhsation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



REGULAR B-SPLINE CURVES AND SURFACES 179

to the condition 0 ¢ conv ({P, —P,H}:‘;:). For example in the case

k = 4 the following points are not accepted by Lau’s condition, but accepted
by the regularity condition since PP, and P,P, are disjoint segments.
Moreover, we show that any set of points satisfying Lau’s condition also
satisfies the regularity condition.

P, Py

P,

Y <1

A full analysis of the case k = 4 can be found 1n Wang [6] and in Stone
and DeRose [5]. Necessary and sufficient conditions for excluding self-
intersections, critical points and inflection points are determined and
efficient algorithms are presented.

Given a control polygon {P,} :’= \» With each k successive points satisfying

the regularity condition of order k, then the curve segments given in (1.2)
are regular. However irregularities might occur if two curve segments
intersect. While big loops are accepted in most applications, small loops in
general have to be eliminated, and we show that if the regularity conditions
of orders k, k+1,..,k+{ are imposed then S(¢;) = S(t,) implies

|#, — #,| > £. Notice that excluding {Pl}i‘:f_l and {P,}7_ ., it

suffices to verify only the regularity condition of order k + .
In Section 3, the regularity of parametric tensor-product B-spline surfaces
is discussed. Let {s,(u,v)} 13= , be a set of functions with continuous partial

derivatives, then we define the surface S(x,v)= (5;(x,v),
s,(u, v), s3(u, v)) as regular if it has a non-vanishing normal and if it has no
self-intersections. The normal may vanish only in case of a rank deficient
Jacobian matrix and our sufficient conditions avoid this situation.

A tensor-product B-spline surface of order & is defined by

n ny

S, v) =Y ¥ P, B, (u) B, ,(v),

1=1y=1
ksu=sn;+1, ksv=sn,+1 1.5

nyny

where {P,},_1,-1 <R3,
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180 N DYN, D. LEVIN, I YAD-SHALOM

On each unit square [£, €, + 1]x [£, £, + 1] with £,, £, integers,
k<l <n, k<l,<n, S(u,v) is given by

6 &
S(u,U): Z Z sz Bx,k(u) Bj,k(v)s
t=8)—k+1)=0—k+1
ue 0,0, +11, ve [£,,0,+1]. (1.6)
. ¢ . . .
We show that if {P,]},lzgl _kaz: t,-k+1 satisfy the following regularity
condition of order (k, k) then the surface patch given by (1.6) is regular.

DEFINITION 1.2: A4 set of points {QU}:C'= 1 Jk2=1 satisfies the surface
regularity condition of order (ky, k,) if

conv ({Pq}z_u_l) N conv ({P,J}z_r‘+1,‘1) =g, riew, (1.7
and

conv ({Pq}x_u—l) M conv ({P,]},_lj_,2+1) =@, r,e W, (18)
and
cone ({Py, — xj}x—lf—r1+lj=l)n

o D 2k LN
11 CoOnT (4 ,[—lujj=lf_r2+lx_l}_

-
——
“
~~
—
\O
~

Vrl, r, rlewkl, rZEWkZ.

where W and W,, are defined by (1.3)

The largest number of conditions occur when both &, and k, are odd, since
(1.7) and (1.8) are two conditions each, and (1.9) includes four conditions.
In case of even numbers k;, k, then (1.7), (1.8) and (1.9) are one condition
each. Here the cone of a set 4 is defined by

cone (A) = {aa |a € R, aeconv (4)}. (1.10)

Also, we define the <chopped cone of a set A4 as
{aa ||a| =1,aeconv (4)}. Note that if condition (1.9) is violated then
the two cones intersect along a line through the origin. Thus it is sufficient to
verify that the chopped cones corresponding to the cones in (1.9) have no
intersection point except for the origin.

In analogy to the curve case, if all the regularity conditions of orders
(G, j)k<isk+¥, k=<j<k+{,areimposed then S(u;, v;) = S(u,, v;)
implies either |u; —u,| =€, or |v; —v,| =0,
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REGULAR B-SPLINE CURVES AND SURFACES 181

Actually, condition (1.7) and (1.8) may be replaced by sharper ones (see
Remark 3.6), but this improved regularity condition has no simple geometri-
cal interpretation.

We conclude Section 3 by extending Lau’s condition to tensor-product B-
spline surfaces.

2. SELF-INTERSECTIONS AND CRITICAL POINTS OF B-SPLINE CURVES

Let {Pi}j.:l be the control points then by (1.2):

S(t) = iBi,k(l) P,, te[kk+1], 2.1

i=1

and the behavior of B, (1), ..., B, (t) on [k,k+1] is given by the
following lemma.

LEMMA 2.1: If k =2 is an even number then

1. Bl’k(t)s---sB%C’k(t), te [k,k+1].

2. Bk’k(t)s---sB’é'H,k(t), te k,k+1].

3. By (8), ..., B ’Ec,k(t) are strictly decreasing on [k, k + 1].

4. B§+ 1,&(1)s oo B (2) are strictly increasing on [k, k + 1].

5. B’EC ¢ (t) is a maximal B-spline on [k, k + -;- ], BI§(+ 1.k Is maximal on
1
= 1.

[k + 355 k + ]

If k=2 is an odd number then

1. Bl’k(t)s---sBk;zl’k(t), te [k,k+1].

2. Bk,k(t)s---sBk%’k(t), te [k,k+1].

3. By x(?), ... B ’f_;__l_,k(t) are strictly decreasing on [k, k + 1].

4, Bk;23,k(t), wy B 1 (t) are strictly increasing on [k, k + 1].

5. Bk 4(t) is a maximal B-spline on [k, k+ % ] Bk, is maximal on

1
[k+§,k+1].

Proof : Since B; () = By ;(t —i + 1) and B, ,() is a strictly increasing
function on the left half of its support and a strictly decreasing function on
the right half of its support, the proof is completed. O

vol. 26, n° 1, 1992



182 N DYN, D LEVIN, I. YAD-SHALOM
The following lemma provides a sufficient condition for a non-empty
intersection of two polytopes. The proof of the lemma is trivial.
. n d A 5172 d
LEMMA 22: Given Q= {Q,},.1<R% Q= {Qj}j=1 < R? and non-
negative coefficients {a,}._, {07/};2=1 with
L8t n - n n
Za'Q‘=Z&1Q1 and Za,=2&j#0
1=1 J=1 1=1 J=1

then conv (Q) N conv (Q) * .

THEOREM 2.3: Let {P,}le,

Definition 1.1, then S(t) as defined by (2.1) has no critical points.

Proof : Using the differentiation formula for uniform B-splines ([1],
p. 138)

k = 3 satisfy the regularity condition of

Bll,k(t):Bz,k~1(l)—B1+l,k—l([)> (22)
together with (2.1), we get

S (=3 B (=B, 1 s ()P, kst<k+1. (23)

1=1

Let #; be a critical point then by (2.3)
Y Biini-1(8) =B, (1)) P, =
=1

k
= Y Bu1(@)=-B 11 ()P, 24

1=r+1

for any 1<r=<k. Now, since By, _,(¢) and B, ,_;(z) vanish on
[k, k + 1], the coefficients on both sides sum up to B, ;,_(#). Let
k be even, then in view of Lemma 2.1, B’%+ Lk—1(t) >0, is a maximal B-
spline. The choice r =§ together with Lemma 2.1 implies that all the
coefficients on both sides of (2.4) are non-negative, and sum up to
B’% + 1Lk k-1(t) =0. Thus (2.4) satisfies the conditions of Lemma 2.2 and

therefore

conv ({P,}f/i]) N conv ({Pz}::’fn) >3,
3

which contradicts the regularity condition. The proof with £ odd is
analogous but we have to consider two choices of r, each contradicting the
regularity condition. a
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REGULAR B-SPLINE CURVES AND SURFACES 183

THEOREM 2.4 : Let {Pl}f= p k=3 satisfy the regularity condition, then
S(t) as defined by (2.1) has no self-intersections.

Proof : Let t|, , € [k, k + 1] with ¢; < t, satisfy S(#,) = S(z,). In view of
2.1

Ma—

P, (B, (1) — B, 1 (1)) =0, (2.5)

1=1

which implies

k
P,(B, (t)) — B, 1 (ty)) = Z P,(B, (1) — B, (). (2.6)

1 t=r+1

oM~

H

il

k k
Since Z B, (1) = Z B,(t,) = 1, the scalar coefficients in (2.5) sum up to

=1 =1

zero and the sum of the coefficients on both sides of (2.6) is the same. Let

k be even, then the choice r =—§ together with Lemma 2.1 implies that

all the coefficients on both sides of (2.6) are positive. Thus by Lemma 2.2
conv ({P }k/2 ) N conv <{P}k k ) #*
V=1 thy = 3+ 1 4

which contradicts the regularity condition.
The proof for k& odd is analogous but two choices of » are required, each
contradicting the regularity condition. O

COROLLARY 2.5: If the control points {P,}le, k=3 satisfy the

regularity condition, then the curve S(t) defined by (2.1) is regular.
In the following we discuss intersections of two curve segments of order k.
et {P,}f:f, f =1 be the initial control points then by (1.1)

k+8

S()=Y P, B, (1), k=t<k+{+1, Q2.7
1=1

and consider the two curve segments corresponding to t € [k, k + 1] and
telk+€, k+¥f+1], where £ >0 is an integer.

LEMMA 2.6: Let S(t) be defined by (2.7) and let t,, t, satisfy
telkk+1), e lk+ €, k+ 0 + 1] then there exists r € Wy such that

B],k(tl) BB]’k(t2) _] =1..r s (28)
B],k(tZ)BB],k(ll) _] =r+1k+E, (2.9)

where W, is defined by (1.3).

vol 26, n° 1, 1992



184 N. DYN, D. LEVIN, I. YAD-SHALOM

Proof : For each pair ¢ t, the existence of a positive integer r, for which
(2.8), (2.9) hold, follows from the fact that the derivative of a B-spline
function has one strong sign change. To computer r assume that

k + { is even. Then B&:;_" .k (?) obtains its maximal value at ¢ = k + 3 and is

symmetric about this point. Now since |k + g -1 | =< ’k + g — 1,| it follows

that B¥,k(t1) = B#,k(tz) and by a similar argument B¥+ Le(h) =<
B# + 1% (#2). The proof of the case where k + { is odd is analogous. O
The following theorem is a direct consequence of Lemma 2.6. The proof
is similar to the proof of Theorem 2.4.
THEOREM 2.7 : Let S(t) be defined by (2.7), 3 < k and let {P,}f:f satisfy

the regularity condition ofg order k + £, then the curve segments corresponding
to {Pi}f,:l and {P,-}f:l,+l do not intersect.

" We conclude this section showing that the regularity condition is stronger
than Lau’s condition.

THEOREM 2.8 : Let {P;}¥_ |

satisfies the regularity condition.

k = 3 satisfy Lau’s condition then {Pi}];=1

Proof : For k =3 the conditions are equal, thus we consider k = 3.
Assume in contradiction that {P,-}f.c= does not satisfy the regularity

1
.- o ~ ~ . . . k
condition then there exists 1 <7 < & and non-negative coelficients {a;};_,

E’ZaiP,: Yy a; P, ia,: Y oa;=1. (2.10)

By (2.10) we get

a (P —Py)+ (ay+ay) (Py—P3)+---+
+(ay+rta, ) (P = P))+
+(aj+--r+ra )P =(a, 1+ F+ap) P, 1+
F(@pato b @) Py —Prp)+oeet
+ (a1 +ap) (P —Pry) + o (P —Pr_y) (2.11)

which implies

Oeconv ({P,— P, }<°]) (2.12)

contradicting Lau’s condition. O
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REGULAR B-SPLINE CURVES AND SURFACES 185

3. REGULAR TENSOR PRODUCT B-SPLINE SURFACES

In the following we discuss the regularity of a tensor-product B-spline
patch given by

S(u,v) = i iP,jB,,k(u)Bj,k(v), (w,v)elkk+1), (3.1)

1=17=1

where k =3, {P,j}:czl}":l < R? and {PU}LI;‘:] satisfy the regularity

condition given by Definition 1.2.
Given two sets X, Y, we define

X-Y={x-y|xeX,ye Y} (3.2)
and we make use of the following lemma.
LEMMA 3.1: Given two sets P = {P,}"_, O = {QJ}]"'=1 then

conv (P) —conv (Q)=conv ({P,—Q, |i=1,..,nj=1,...,m}). (3.3)

Proof : Obviously conv (P) — conv (Q) is a convex set which contains
P, — QJ, i=1,..,n, j=1,..,m hence

conv ({P,-Q,|li=1,..,nj=1,..,m })cconv (P)—conv (Q).
To see the inverse inclusion let {a,} :’= » B J}j'"= , be non-negative numbers
satisfying Z a, = Z B, = 1. Then

t=1

=1

ZalPl_ ZB!Q}Z Z
1=1 7=1 =1
2

THEOREM 3.2 : Let {PU}:C= . jkz 1» k = 3 satisfy the regularity condition of
order (k,k) and let S(u, v) be defined by (3.1) then the Jacobian matrix.

as,  8S
W
S aS 35, 35, 5
(a_u,%)_ — = | wv)ekk+1] (3.4)
3S; a5,
)

is of rank 2.

vol 26, n" 1, 1992



186 N. DYN, D. LEVIN, I. YAD-SHALOM

Proof : In view of (2.2) we have

k k
g_jw,v):l;j; Py By (®) (Byx 1 (0) = By oy ()
B @)= 3 T PyB) B (0) =By, i1 () (B

]
~.
*

and by defining

F;(v) = z P Bj,k(v)
k
G;(u) = Z P B; ((u), 3.6)

i=1

we get

3s .
W (u,v) = Z F;(v) (B g 1(u) =B 16_1(1))

i=1

D)= ¥ G Besr @) B @) ()

j=1
and in analogy to Theorem 2.3 it is clear that (1.7) implies 2—‘3 (u,v) # 0 and

(1.8) implies Z—f (u,v) 0.

In order to establish the linear independence of g—f and g—f we rearrange
(3.5) in the following form
05 Y B0, 3.8
a_u(u’v)i Z (V) Up(u) (3.8)
j=1

k
Uj(u)= Z Pfj(Bl’,k—l(u)—Bf+1,k—1(u))—

=Y PyBiirk-1(u) =B 1(w)). (39)

i=1
Here, as in the curve case, there exists r; € W, such that the expression (3.9)

is of the form

k

- "1
Uj(“)= Z ap Py — Zﬁipij:

P=r1+1 . i=1

M? AN Modélisation mathématique et Analyse numérique
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REGUILAR B-SPLINE CURVES AND SURFACES 187

where
k n
ap=0, B,;,=0, Y ap=Y B;#0 (3.10)
f=ri+1 1=1

and there exists a positive constant ¢ independent of j with

c. l?](u) € conv ({Pef}lff=r1+l) — conv ({P,-j}:l= D (3.11)

By Lemma 3.1 we get
c. Uj(“) € conv ({Pfj—Pij}:l=1]?c=r1+1,k=1)

and by (3.8)

aS r
a(u,v)econe({Pl’j_Pij}il=1lfc=r1+l;(=l)- (3.12)

By a similar argument we get for r, € W,
aS r
3 (u,v) econe ({P;— Pi]}j2:1 ’i;zr2+1 f‘t:l)
and (1.9) guarantees the linear independence. |

THEOREM 3.3 : Let {P,]}fz ) ]'F= 1> k = 3 satisfy the regularity condition of

order (k,k) and let S(u,v) be defined by (3.1) then S(u, v) has no self-
intersections.

Proof : Let uy # u,, vy % v, then

S(u, v) — S(up, v) = z F,(v) (B (uy) — B; 1 (u3))

S, v,) — S, v,) = Z G; (u) (Bj,k(vl) - B; (1)), (3.13)

7=1
where F;(v) and G;(u) are given by (3.6). In analogy to Theorem 2.4, (1.7)
implies S(u, v) # S(u,, v), and (1.8) implies S(u, v{) # S(u, v5).
Assume in contradiction
S(u, vy) = S(uy, vy), 3.14)
then
S(up, vy) ~ S(uy, v)) = S(uy, v,) — S(uy, vy) (3.15)

vol. 26, n’ 1, 1992



188 N. DYN, D. LEVIN, I. YAD-SHALOM

which implies

Pij Bj,k(”1) (Bi,k(ul) — B (1)) =

||Ma~
Naoks

—_
~

1

Il
™M=
M»

P B; (1) (B (V7)) — B; (v1)). (3.16)

i 1

1y

Il

The left side of (3.16) is an expression of the form
k
Z B; i (vy) Uj(uy, usy) 3.17)
j=1
where

- k
[]j(ul’ uy) = Z Pij(Bi,k(ul) - Bi,k(uz)) (3.18)

and in analogy to Theorem 3.2 there exists a constant ¢ # 0 independent of
j satisfying

¢. Uj(uy, u,) € conv ({Py}] )—conv ({Py};_1). (3.19)

=r+1

Hence

P . . . /6D n N 14 I N - -
S(uy, v1) — S{ug, vy) €cone ({Pyy— Py}io1b=r+15-1), (3.20)

and by similar arguments
S(uz, v) = S(u, v1) € cone ({Pig — Py} o1 foppif o), (3:21)
contradicting (1.9). a

COROLLARY 3.4: Let {Pij}f= ) j'-‘= 1» k =3 satisfy the regularity condition

of Definition 1.2, then S(u, v) as defined by (3.1) is a regular surface.
The following Theorem is the analog of Theorems 2.7.

THEOREM 3.5: Let S(u, v) be defined by

k+ € k+,

S(u,v) = Z Z PijBi,k(u) Bj,k(v)a

1=1 y=1

k<su<k+{0,+Lksv<sk+0,+1. (3.22)

k+?
Let {Pij},-:l'j]-c:fz satisfy the regularity condition of order (k + €,k + ()

M? AN Modélisation mathématique et Analyse numérique
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REGULAR B-SPLINE CURVES AND SURFACES 189

k+8,  k+8,

then the patches corresponding to {P,-j}:.‘=1}‘=1 and {P};i e 1jie41

do not intersect.

Proof : The proof of this theorem uses the same arguments as in
Theorems 2.7 and 3.3. O

Note, that as in the curve case, given a set of points {P,-j}:l'= ,;'2:1 with
n;, n, sufficiently large then except for a boundary layer of width consisting
of k + £ — 1 points, it is sufficient to impose the regularity conditions of
order (k+ £,k+f) on all control points, in order to guarantee that
S(uy, vy) = S(uy, v,) implies either |u; —uy| =0 or |v; —v,| > L.

Remark 3.6 : A close examination of Theorems 3.2, 3.3 and 3.5 shows
that the analysis holds even if we improve the conditions (1.7) and (1.8).
These new conditions allow a non-empty intersection of the convex-hulls
but the matrix of the coefficients has to be of rank > 1. The improved (1.7)
condition of order (k,, k,) is contradicted only if there exists a non-negative

. k .
matrix {aij},»lzl ;=1 of rank one and there exists r; € W, such that

no ks ky ky ok ki ka
Y Yay= Y Ya;=land }y Y a;Py= Y Y a;P;
1=1y=1 t=r+17=1 1=17=1 t=rp+1y=1

In the following we extend Lau’s condition to the surface case. First we
introduce the sets

AP =conv ({P;—P,_,;li=2..kj=1..k1})

(3.23)
AP =conv ({P;—P,; ,li=1..kj=2.k})

THEOREM 3.7 : Let S(u, v) be defined by (3.1) with k = 3. Assume
0¢éAP, 0¢ AP (3.29)
cone (4,P) Ncone (4,P) = {0} (3.25)
then (3.1) is a regular surface.

Proof : Obviously

cone ({Py,— P, };_1§_, .15 1) ccone (4,P)
! ]}rzl et (3.26)
cone ({Pw“PiJ}j=1 §=r2+1 f-‘=1)ccone 4,P)

thus (3.25) implies (1.9). By arguments similar to Theorem 2.8 it follows
that (3.24) implies the improved conditions (1.7) and (1.8) stated in
Remark 3.6. O

Remark 3.8 : The analysis in this section holds also for the case of mixed-
orders tensor-product splines.
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