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NEW ALGORITHMS AND TECHNIQUES FOR COMPUTING
WITH GEOMETRICALLY CONTINUOUS SPLINE CURVES
OF ARBITRARY DEGREE (¥)

by H.-P. SEIDEL (})

Abstract — The concept of umwversal splines provides new techmiques for computing with
geometrically continuous sphine curves of arbitrary degree These techniques lead to new
algorithms for computing both the sphne control points and the Bezier points, for computing
locally supported basis functions, and for knot insertion As a result we obtain a generalization of
polar forms to geometrically continuous spline curves The presented algorithms have been coded
in Maple and concrete examples illustrate the approach Maple output can be stored in look-up
tables and allows the mnclusion of geometrically continuous splinme curves mn nteractive
applications

Categories and Subject Descriptors : 1.3.5 [Computer Graphics] Computational Geometry
and Object Modelling - curve, surface, sohd, and object representations

General Terms : Algonthms, Design

Additional Key Words and Phrases : Bézier point, blossom, de Boor algorithm, B-spline,
B-spline, connection matrix, control point, geometric continuity, knot insertion, knot vector,
osculating flat, polar form, spline control point, umversal spline.

Résumé — Nouveaux algorithmes et techmques pour calculer avec des courbes splines
géométriquement continues de degrés arbitraires La notion de Spline universel fourmit de
nouvelles techniques pour le calcul avec des courbes splines géométriquement continues de
degrés arbitraires Ces techniques ménent a de nouveaux algorithmes pour calculer les points
de contrédle du spline et ceux de Bézier, les fonctions de bases a support local et les insertions
de neeuds Comme conséquence nous obtenons une généralisation des formes polaires aux
courbes splines a continuité géométrique Les algorithmes exposés ont été codés en « Maple »
et des exemples concrets illustrent la démarche Les sorties Maple peuvent étre rangées dans
des tableaux de recherche et permettent I’ insertion de spline géométriquement continues dans
des applications nteractives
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150 H.-P. SEIDEL

1. INTRODUCTION

During the last decade, geometrically continuous spline curves have
received considerable attention among the graphics and CAGD communi-
ties. However, up to now, algorithms for manipulating geometrically
continuous spline curves of arbitrary degree have not been available. While
it is known that B-spline-like basis functions exist for geometrically
continuous spline curves of arbitrary degree [27], [37], this lack of
algorithms has so far prevented their use in practical applications. In
particular, algorithms for constructing the Bézier points from the given
spline control points, and algorithms for knot insertion, have been missing.

Recently, such algorithms have been developed in [62]. The development
is based on the new concept of universal splines and yields geometric
constructions for both the spline control points and the Bézier points, as
well as new algorithms for constructing locally supported basis functions and
for knot insertion. As a result of this development one obtains a
generalization of the polar form of a B-spline to geometrically continuous
spline curves.

This paper reviews the techniques and algorithms given in [62] and
augments the presentation in [62] by a more detailed discussion of some
implementational issues in computing the Bézier points of a geometrically
continuous spline curve from the given control points. The paper is
organized as follows: Section 2 gives a brief introduction to geometric
continuity and sets up our notation. Section 3 introduces the concept of
universal splines, which is essential for the constructions that. follow.
Section 4 presents a geometric construction for the spline control points of a
geometrically continuous spline curve and generalizes the polar form of a B-
spline to spline curves with geometric continuity. Section 5 shows how to
compute the Bézier points of a geometrically continuous spline from the
given control points and how to compute locally supported basis functions.
Section 6 presents an algorithm for knot insertion and generalizes the de
Boor algorithm for the evaluation of a B-spline to geometrically continuous
spline curves. Section 7 discusses some details of our Maple implementation.
Section 8 contains concluding remarks and points out directions for further
research.

2. GEOMETRIC CONTINUITY

Consider a strictly increasing sequence ¢ = (xj)e:(l, of real numbers. A

spline F of degree n over ¢ is a continuous piecewise polynomial of degree
n on the interval [x, x¢,,] with breakpoints x; such that the derivatives

from the left and the derivatives from the right at x; are related to each
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GEOMETRICALLY CONTINUOUS SPLINE CURVES 151

other. One way to specify this relationship between right and left derivatives
is by means of connection matrices : Let :

DY F(u)s= (F., (u), F{ (u), ..., F Pu))’ €8]
and
DF F(u) = (F_ (u), F" (u), ..., F ®(u)) @)

be the column vectors that contain the first k derivatives of F from the right
and from the left, respectively. The equation

DF Fi(x)=C,;.DF F,_\(x) ©)

sets up a linear connection between the right and left derivatives of the
spline curve F at the breakpoints x;. The k x k-matrix C; is therefore called
a comnnection matrix.

If the connection matrix

C= 1 @

is the identity matrix then F is parametrically C*-continuous. If

B
B, B
By 3B.B, Bi

C = , B1=0 )

is a so-called B-matrix [1], [3], [5], [22], [23], [33] then F is geometrically
G*continuous. In other words: F can be reparametrized to obtain a
C*parametrization without altering the shape of the curve. If

11
2
C1 €11
C= ’ , €11 =0 (6)
€31 €32 €31
is lower triangular with ¢;; = ¢, then F is called Frenet-frame or

F*continuous. Additional information on connection matrices is given in
(11, [23], [27], [34], [32], [37], [38], [40], [42], [44], [53]. Following the
standard convention [27], [37] we will assume throughout that the lower
triangular connection matrices C; are nonsingular and totally positive, but
otherwise arbitrary.

vol. 26, n° 1, 1992



152 H.-P. SEIDEL

In order to specify the order of continuity k& at the breakpoints, knot
multiplicities are introduced : If a breakpoint x; is listed with multiplicity
M ; we require that the first (n — u ;) derivatives of F from the left and from
the right are constrained by C;. In other words: C; is an
(n — p ;) x (n — p;)-matrix. The complete sequence of breakpoints, inclu-
ding multiplicities, is called the knot vector T. Using the standard

convention of (n + 1)-fold end knots it is easy to see that the knot vector

. ’ 1
T = (Xgs coer X 0s X cees X 1y s N o ey X 0 Xp o 15 s X p 1) = (G)FE0T (D)
— R e el R Ve, g
n+1 My e n+1

can be indexed by i from 0 to n +m + 1 with

mi=n+ z i ®
j=1
C: Cl'z Ci
Lo T1 T2 T Ti41
Zo T1 T2 Zy Ti41
Figure 1. — Breakpoints, knots, and connection matrices.

If a knot vector T = (z;)"*{'*' and a sequence of connection matrices
(CJ,-)}'=1 at the interior breakpoints x,, ..., x p are given (see fig. 1) we will
denote by

FuT,C)=FL ()", (CHEZY) ©)

the corresponding space of spline curves in R?. For d = 1 we get e.g. real-
valued splines, for d = 2 we get splines in the plane, for d = 3 we get splines
in R3, etc.

As shown in [27] and [37], the total positivity of the connection matrices
(C j‘fz 1 implies the existence of B-spline-like basis functions N!(u),
i =0,...,m satisfying the following properties :

N} (u)=0 for u¢ (¢;,¢;,,,,) (minimal support) (10)
N (u)=0 for ue (4;,¢;,,, ) (positivity) (11
Y NI(u) =1 (partition of unity) . (12)

1=0
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GEOMETRICALLY CONTINUOUS SPLINE CURVES 153

Hence, every spline curve F € & 4(T, C) has a unique representation

F(u)= Y N(u).d,. (13)
1=0
The coefficients d, € R? are called control points.
Setting higher coordinates to 0 we obtain a natural inclusion

LT, C)ce AT, C)= P5(T,C) ..., 14)
and we denote by & (7, C) the union of all these spaces, i.e.

F(T,C)=|_)ZAT, C). (15)

d=1

Thus & (T, C) contains all spline curves over a given knot vector
T with a given sequence of connection matrices, no matter what dimension
space these curves lie in.

3. UNIVERSAL SPLINES

In this section we show that the study of the whole spline space
& (T,C) can be reduced to the study of a single spline curve F in
S (T, C). At first it seems surprising that the study of the infinitely many
curves in & (T, C) can be reduced to the study of the single curve
F. The fundamental insight arises from the observation that &% (T,C) is
closed under affine maps : If F is an arbitrary spline curve in & (7, C ), then
every image of F under an affine map & will again be a spline in
&L (T, C).

All we have to do, therefore, is find a spline ¥ in & (T, C) with the
property that any other spline F in & (T, C) is an image of F under a
unique affine map @, i.e. that there exists a unique affine map

& : Aff (F) > Aff (F) (16)
satisfying
F(u) = @ (F(u)), an
where
Aff (F) = span {F(u)|u € [xp, x¢,1]} (18)

denotes the affine space that is spanned by the points on the curve

vol. 26, n” 1, 1992



154 H.-P. SEIDEL

F. Such an F is called a universal spline for & (T, C). It will turn out that
universal splines always exist and are essentially unique. In order to gain
insight into their construction we first look at polynomials :

EXAMPLE 3.1 (Normal Curve): Let 2" be the space of all degree n
polynomials. We consider the Bézier curve

F(u) = Z Bl(u). b, (19)

in R"*! whose Bézier points b, are given by the unit vectors in R"*!, i.e.

br=(0,..,0, 1,0,..,0), k=0,....n. .(20)
|
k

Then F is a polynomial curve of degree n in R"*" with the property that any
other degree n polynomial F is an image of F under a unique affine map & :
If the Bézier points of F are denoted by by, the affine map @ :
Aff (F) - Aff (F) is given by

&(by)=by, k=0,..,n. @21

Therefore I is universal for the space P" of ail degree n polynomials. W

This observation has been exploited in a different context in [63] for a
geometric charactcrization of cubics in the plane. The following algorithm
generalizes the above construction from polynomials to splines :

ALGORITHM 3.2 (Universal spline in Bézier form): Given a strictly
increasing sequence (xj)f: o of breakpoints, a series (u j)j‘-’: | of multiplicities,
the corresponding knot vector

: . . 1
T = (Xgooos X o X5 s X |y eea Xy ooty X g, Xy 1 e, X g ) = (I (22)

n+1 I3 My n+1

¢
with m = n + z # ;- as. given by (8),-and a series (Cj)f=1 of conmnection
=1
matrices, the algorithm sets up the universal spline F of (T, C) as a
piecewise Bézier curve in R™*!.

® Since we have adopted the convention of using (n + 1)-fold end knots
ty=---=t, and t, | =---=1t,, .1, the first non-trivial segment of
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GEOMETRICALLY CONTINUOUS SPLINE CURVES 155

F is the n-th segment F, over [x, x\] = [t, t,.1] with Bézier points

05 s Oy n. Motivated by the previous example, we set

o

bye=(0,.,0, 1,0,.,0), k=0,..,n. (23)
I
k

= h

e Suppose that the segments F s Fn sup-s Fny ; have already been

©

[l ol

1

A A h
n+Zp,j,n oan+iuj
1=1 j=1

Jj

(S

constructed. Then the Bézier points b, , i 105 o0
j=t
over the next interval [x,, x;, , ] are defined as follows :

— Fork =0,..,n—pn , the points b, , % wpk are defined in such a way
=]

that the derivatives F&) hil u (x,) and F ,(lk+) i “; (xy,) satisfy equation (3)
=1 =1
fortlsk<sn—p,
— Fork=n—-p,+1,..,n the points ISH i

j=

wip e defined as
1

13,,+"2,Lj,k==(0,---,0, 1 ,0,.,0). = 24)

h
L Mtk

j=1

Two examples should clarify this approach :

EXAMPLE 3.3 (C %“continuous cubics) : We consider a cubic spline with
breakpoints

X=0,x=1,x=2,x3=4,x,=5,x5=06 (25)
of multiplicity
Bo=4 p1=py=p3=pa=1lpus=4 (26)
such that the corresponding knot vector T is given by
T=(t)e=1(0,000,1,2,4,56,6,6,6) 27

with n =3, m=7. The (n—p;)x (n— p;)-connection matrices C; at

x; are given by

1 0 .
C. = =1,2,3,4
j (0 1),1 2,3, (28)
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156 H.-P. SEIDEL

i.e. the resulting spline is parametrically C*continuous. The Bézier points
53,0, 53,1, 53,2, 53,3, 54,1’ [’4,2’ 54,3, 55,1’ 55,2’ 55,3, 56,1: 56,2> 136,3a
157’ 1> 137, 2 57, 3 of the universal spline F in Bézier representation are given by
the rows of the following table :

1 0 0 0 0 0 0 07
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 -1 2 0 0 0 0
0 1 —4 4 0 0 0 0
0 0 0 0 1 0 0 0
0 -2 8 -8 3 0 0 0 (29)
0o —-12 44 — 40 9 0 0 O
0 0 0 0 0 1 0 0
0 6 —22 20 —-9/2 3/2 0 0
0 352 -64 58 —51/4 9/4 0 0
0 0 0 0 0 0 1 0
0 —-35/2 64 — 58 51/4 -9/4 2 0
0 —64 234 212 93/2 —-152 -4 0
L 0 0 0 0 0 0 0 1]
For the Bézier points 55,1 and 553,, e.g., condition (3) translates into
55,] = 3 . 54,3 - 2 . b‘4’2 (30)
=(0,-2,8,-8,3,0,0,0) € R®
and
55’2=9- 54,3—12. 54’2-{’—4. 54,! (31)

= (0, — 12,44, — 40,9, 0, 0, 0) € R®

(note that the length As of the interval from ts to t; is given by
As = tg — ts = 2), while the Bézier point '55, 3 IS unconstrained and is defined
as

bs3=1(0,0,0,0,0,1,0,00cR*. m (32)

EXAMPLE 3.4 (G *continuous cubic) : Again we consider a cubic spline
with breakpoints

x():osxl:17x2:25x3=4’x4=5’x5:6 (33)

M? AN Modélisation mathématique et Analyse numérique
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GEOMETRICALLY CONTINUOUS SPLINE CURVES 157
of multiplicity
Bo=4,py=py=p3=pg=1pns=4 (34)
such that the corresponding knot vector T is given by
T=(t)Ly=(0,00,0,1,2,4,5,6,6,6,6) (35)

with n =3, m="7. The (n—p;)x (n— u;)-connection matrices C; at
x; are given by

1 O .
= =1,3,4,
o (0 1), j=1, (36)
and
(1 0
Co= (20 1)’ 37

i.e. these splines are geometrically G*continuous. The Bézier points
1;3,0’ 53, s 53,2’ 53,3’ 54, 1> 134,25 54,3: BS, 1s 55, 2> 55,39 56, 1 BG,ZS 56, 3>
137’ 15 137,2, 57’ 3, of the universal spline F in Bézier representation are given by
the rows of the following table :

1
J

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 -1 2 0 0 0 0

0 1 -4 4 0 0 0 0

0 0 0 0 1 0 0 o

0 -2 8 -8 3 0 0 0

0 -52 204 —200 49 0 0 0 (38)

0 0 0 0 0 1 0 0

0 26 - 102 100 —49/2 3/2 0 0

0 155/2 -304 298 —-291/4 9/4 0 O

0 0 0 0 0 0 1 0

0 -—-155/2 304 — 298 291/4 -9/4 2 0

0 -284 1114 -1092 S533/2 —-15/2 4 O

LO 0 0 0 0 0 0 1]
In this example the Bézier point 155,1 is again given as

bs1=3.b43—-2.b,, 39)

=(0,-2,8,-8,3,0,0,0) € R®

vol. 26, n° 1, 1992



158 H.-P. SEIDEL

while 55,2 is defined as

b52=49.54’3—52.54’2+4-54,]

’ (40)
= (0, — 52, 204, — 200, 49, 0,0, 0) € R®.
The Bézier point 55’3 is again unconstrained and is set to
bs,3 = (0,0,0,0,0,1,0,0) e R*. m (41)

Algorithm 4.2 constructs a universal spline ¥ in Bézier form. There are
other ways to construct universal splines. It is easily shown that F is
universal for & (7, C) iff dim Aff (F) = m. Moreover, any two universal
splines F ; and F , are equivalent in the following sense : there exists a unique
affine map

D, Aff (F)) > Aff (F,) 42)

that is 1 —1 and onto and that maps the curve F, onto the curve
F,.

It should be clear from the preceding discussion that properties of the
members of a spline space S (T, C) that are invariant under affine
transformations can be detected simply by looking at the universal spline
F for & (T, C). Hence a spiine F ¢ & (T, C) will e.g. saiisly the convex
hull and/or variation diminishing property iff this property is satisfied by the
universal spline F for & (T, C). This is rather straightforward.

4. A GEOMETRIC CONSTRUCTION FOR SPLINE CONTROL POINTS

As mentioned in Section 2, the total positivity of the connection matrices
implies the existence of B-spline-like basis functions N[(u) such that every
spline curve F € & (T, C) has a unique representation

F(u)= Y Ni(u).d,. (43)

1=0

where the coefficients d; € R are the control points. In this section we use
universal splines to construct these control points of a geometrically
continuous spline curve by intersecting osculating flats. This construction
does not work for arbitrary spline curves since arbitrary spline curves may
be degenerate. However, this construction is always guaranteed to work for
universal splines. Since any spline F € & (7T, C) is the image of a universal
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GEOMETRICALLY CONTINUOUS SPLINE CURVES 159

spline F for & (T, C ) under a unique affine map @, this construction can be
used to construct the control points of a given geometrically continuous
spline curve of any degree.

We start with the definition of osculating flats : let F be a differentiable
curve in R? The first k derivative vectors F'(u), F"(u), ..., F ®(u) span a
linear subspace TFF of R? Its translate

Osc, F(u) =F(u) + T*F 44

OSC]F(].)
Osc F(1) I

f(1,1,1)

AN
~

;g% £(0,1,1)

ya
L.
V4 Z
Z,
v/ 7
A~ —
f0,0,0) L= 7
/
Osc, F(0
Ose, F(0) 2F(0)
Figure 2. — Osculating flats and Bézier points for a cubic Bézier curve.

is an affine subspace of R? and is called the k-th osculating flat of
F at u. Similarly, if F is differentiable from the left or right, then the first
k left, respectively right, derivatives span a linear subspace TXF_,
respectively T F +» and its translate

Osc, F_(u)=F(u)+ TCF_, (45)
respectively
Oscy F, (u)=F(u) + TFF (46)

is again an affine subspace of R?.

If F is a polynomial its osculating flats can easily be represented in terms
of its Bézier points : in fact, the k-th osculating flat of F' at 0, respectively at
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160 H.-P. SEIDEL

1, is simply the affine space spanned by its first, respectively last,
k + 1 Bézier points, i.e.

Osc, F(0) = {i a,b,—‘z a; = 1] @7
and
OsckF(l)z{ Z aibi‘zaizl}. (48)
t=n-k i

It has been observed e.g. in [55] that the Bézier points of a non-
degenerate polynomial F as in Example 3.1 can be constructed by
intersecting osculating flats (see fig. 2). In fact, in this situation the k-th
Bézier point b; is given as

b, = Osc, F(0) N Osc,_; F(1). (49)
More generally : let
Uy ooy gy s Uy oo tty)  With oo+ p=n (50)
e S —
My B

be a sequence of real numbers. Then for a non-degenerate polynomial
F as in Example 4.1 the expression

h
f(ul, ceen ul’ cees Upy ooy uh) = moscn;ﬂi F(u,) (51)

N — S ——

B B =1
is always well defined. It follows immediately from this definition that the
map f is symmetric, and that f satisfies £ (u, ..., u ) = F(u). In addition, it
can be shown that f is affine in every argument. Therefore f is the polar
form or blossom of F [55].

Unfortunately, these definitions break down if the polynomial F is
degenerate in the sense that its Bézier points are affinely dependent. In fact,
the above construction even fails for a simple degree 3 polynomial in the
plane, since all its osculating planes are equal and hence do not intersect
properly. Therefore this method of intersecting osculating flats is rejected in
[55] for the study of splines.

It turns out, however, that the above construction will always work for
universal splines. In fact, universal splines have been set up in exactly such a
way as to guarantee that osculating k-flats intersect properly. We are
therefore able to construct the control points of a universal spline
F simply by intersecting osculating flats. If the Bézier representation of
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F is known this amounts to nothing more than solving a system of linear
equations where the coefficients are given by the Bézier points. Details of
our Maple implementation are given in Section 7. The main results are
summarized in the following theorem :

THEOREM 4.1 : Let F be a universal spline of degree n for a spline space
F (T, C). Then the following holds :

o Consider a subsequence (t7 |, ...,t [ ,) = (U, ..., Uy, .., Uy, ..., u;) of

SN N
My Moy

an arbitrary knot vector refinement T* of T and define

Osc F,(u) if j=1

n—p,
o F(y) = OSCn_#I_I‘:'(u]—) if 2<j=<h-1 (52)

n—p;

Osc,_,, F, (w) if j=h.

Then the expression

S o Moo Wy o ) =

My Ko

h
= ((\On_yu, F(u) with py+---+p,=n (53)

j=1

is well-defined.

e The resulting map f is symmetric in its n arguments and satisfies

fuy.yu) =F(u). (54)

o If F is parametrically C" ™ *'-continuous at the knots t; then f s

multiaffine [56], [60], and hence is the polar form of F. For arbitrary
connection matrices f is multirational : More precisely : Given a subsequence

@ ot n_1) of an arbitrary knot vector refinement T* of T with
¥ <t |, the points

f(ti*+1""’tl;k’u7tlzk+1""’ti*+n—1) (55)

are collinear, and the expression f(t¥ |, .,tF utjf |, ..t ,._1) is

rational in u for ue [, tfF, ]

e The spline control points ofo, ey cfm of F are given by

di=f(tisis o liin)- (56)
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162 H.-P. SEIDEL

They are affinely independent and form an affine frame for the m-dimension-
al affine space Aff(F) as defined by (18). ®

A full proof of Theorem 4.1 is given in [62]. Instead of repeating this
rather technical proof here we will illustrate the workings of Theorem 4.1 by
looking at the two concrete examples of the preceding section :

EXAMPLE 4.2 : We start with Example 3.3. The B-spline control points are
given as follows :

dy = £(0,0,0) = Osc, F(0)
d, = £(0,0,1) = Osc, F(0) N Osc, F(1)

dy, = £(0,1,2) = Osc, F(0) N Osc, F(1) N Osc, F(2)

d; = £(6,6,6) = Oscy F(6) .

Note again that intersecting osculating flats is nothing more than solving a
linear system of equations where the coefficients are given by the Bézier
points. We illustrate this procedure by explicitly computing the control points

cfz = f(O, 1,2). Since ...,0,1,2,... is a subsequence of the original knot
vector T, the control point cfz satisfies

, = £(0,1,2) = Osc, F(0) N Osc, F(2), 57
and (47), (48) yield
Osc, F(0) = span {b3 ¢, by 1, b3 5} (58)
and
Osc, F(2) = span {by ,, by », 54,3} ) (59)
Therefore d, satisfies both
dy=1bsg.ro+bs .1 +byy.rorgtri+ry=1 (60)

and
Ciz=b‘4’1.Sl+54,2.s2+64,3.53,81+S2+S3=1. (61)
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Using the results of Table (29) together with the condition
ro+r +ry=1 (62)

this yields the following system of equations :

1 0 0 O 0 0 0
010 0 -1 0 "1 0
0 0 1 1 4 0 " 0
= 63
0 00 -2 —4 0 5 0 63)
0 0 0 O 0 -1 5 0
1 11 0 0 0 1
53
Solving for ry, 1y, 1y, 8y, Sy, S3 we obtain
r0=0, r1=—1, r2=2 (64)
and
Sl=2, 522—'—1, S3=0, (65)
and d, is given as
dy=0.b30—bs +2.b3, (66)
=(0,-1,2,0,0,0,0,0) e R®. (67)

The results below have been obtained using the linalg package of Maple [18].
The control points a;o, v cf7 are given by the rows of the following table

N

1 0 0 0 0 0 0 0]
0 1 0 0 0 0 0 0
0 -1 2 0 0 0 0 o
0 3 - 10 8 0 0 0 0
0 -17 62 — 56 12 0 0 0 (68)
0 29 -106 96 -21 3 0 0
0 —-64 234 212 93/2 -15/2 4 0
L0 0 0 0 0 0 0 1]

Note that it is obvious from this table that the B-spline control points
dy, ..., dy of F are in fact affinely independent. W

EXAMPLE 4.3 : Next we consider the B-spline of Example 3.4. As suggested
by Theorem 4.1 the table of B-spline control points below shows the same
pattern as the corresponding table in the previous example. Again, the B-

spline control points d,, ..., (i7 are given by the rows of the following table :
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10 0 0 0 0 0 0]
0 1 0 0 0 0 0 0
0 -1 2 0 0 0 0 0
0 29/23 —110/23 104/23 0 0 0 0 (69)
0 —77 302 —296 72 0 0 0|
0 129 — 506 496  — 121 3 0 0
0 —284 1114 —1092 533/2 —1572 4 0
Lo 0 0 0 0 0 0 1]
m
—f dg
dy =f (4,5,6) d, dy=£ (0,1,2)
£ (4,
£ (1,2,2)

< e !
d4=f (2;4’5) I \“5="

Figure 3. — An affine image F of the universal spline ' of Example 4.3. Note particularly the
spline control points d,...,d ; and the Bézier points b, = (2,2,2), by, = £(2,2,4),
bs, =1f(2,4,4) and b, ; = £(4,4,4).

We conclude this section by pointing out that the computations above are
invariant under affine maps : Given an arbitrary spline F = & (F) we can
therefore compute its spline control points dy, ..., d ,, by simply applying the
affine map @ to the control points dy, ..., d, of the universal spline

F, ie.

di=®d), i=0,..m. (70)

5. COMPUTING THE BEZIER POINTS

A suitable method for rendering B-splines is to convert from the B-spline
representation to the representation as a piecewise Bézier curve : Once the
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Bézier polygons have been constructed, each curve segment can be drawn
using Bézier curve algorithms. For cubic B-splines such a construction was
first given in [11] (see also [6], [23]). This construction has subsequently
been generalized to degree 4 and 5 in [12], [13], [28], [29], [50], [52]. [41]
gives a geometric construction for Frenet-frame-continuity of arbitrary
degree. However, as pointed out in [6] and [23], «an algorithm for
geometrically constructing the Bézier polygons of a G * g-spline for arbitrary
degree and arbitrary shape parameters is currently unknown. »

In this section we develop such an algorithm and give a geometric
construction for the Bézier points of a geometrically continuous spline curve
from the given control points. The algorithm works for geometrically
continuous splines of arbitrary degree with arbitrary shape parameters.

In fact, most of this algorithm has already been developed in the
preceding section : Recall from Theorem 4.1 that the spline control points

a7,~ i =0,..,m of a universal spline F form an affine frame for the m-
dimensional affine space Aff (F). It is therefore possible to represent the

Bézier points of a universal spline ¥ as affine combinations of the control
points. The barycentric coordinates in these affine combinations are

obtained by applying to the Bézier points of F a simple coordinate
transformation M that sends the control points d,, i =0, ..., m to the unit
vectors

e;=(0,..,0, 1,0,.,00eR ™' i=0 .,m, (71)
|

I
i.e. M is defined by the system of equations
M.di=e, i=0,..,m. (72)
This leads to the following algorithm :

ALGORITHM 5.1 (Bézier points from control points) : Set up the universal
spline F in Bézier form according to Algorithm 3.2.

o Compute the spline control points

di:f(li+1a'--:ti+n) (73)

according to Theorem 4.1.

o Set up the inverse M~ of the (m + 1) x (m + 1)-transformation matrix
M by taking d; as i-th column of M~', for i =0, ..., m.

e Compute M as the inverse of M~".
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e Apply M to the Bézier points b;,, i =n,..,mk=0,..,n The
resulting coefficients

(@l ™) =M.b;, (74)

are the barycentric coordinates of
- m . -
bi,k = z a{,k B dl (75)
Jj=0

w.r.t. the control points dy, ..., d,. W

Note that the barycentric coordinates a{,k are nothing else but the
discrete B-splines which correspond to the conversion to Bézier represen-
tation by multiple knot insertion. Again, we illustrate the workings of
Algorithm 5.1 by means of the following two examples :

EXAMPLE 5.2: We start with Example 3.3. The 8 x 8-matrix M~ is
obtained by taking the control points d‘,-, i =0,..,7 (= rowsin the table of
Example 4.2) as columns of M~ which gives

1 0 O 0 0 0 0 0
/0 1 -1 3 - 17 29 — 64 O\
00 2 -—-10 62 —-106 234 O
MmM-1-10 0 0 8 - 56 96 =212 0 (76)
0 0 o 0 12 - 21 932 0
0 0 O 0 0 3 - 15/2 0
0 0 o 0 0 0 4 0
0O 0 o 0 0 0 0 1
Inverting M~ we get the transformation matrix
1 0 0 0 0 0 0 0
/0 1 12 1/4 0 0 0 0
0 0 1/2 5/8 1/3 0 0 0
/0 0 0o 1/8 7/12 1/12 0 O
M = 0 0 0 0 1/12 7/12 1/8 0 (7
0O 0 o 0 0 1/3 5/8 0
0 0 o0 0 0 0 1/4 0
0 0 o0 0 0 0 0 1

Applying M to the Bézier points 13,-’ « ( = rows in the table of Example 3.3) we
get the barycentric coordinates of the Bézier points w.r.t. the B-spline control
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points cfo, s a;7. These barycentric coordinates of 133’0, e 57’ 3 are given by
the rows of the following table :
1 0o o0 0 0 0 0 o]
0 1 0 0 0 0 0 o0
0o 1/2 12 0 0 0 0 0
0 1/4 5/8 1/8 0 0 0 0
0 0 3/4 1/4 0 0 0 0
0o 0 172 1)2 0 0 0 o0
0 0 1/3 7/12 1/12 O 0 0
0 o 0 3/4 1/4 0 0 o
0 o0 0 1/4  3/4 0 0 o (%)
0 O 0 112 7712 1/3 0 O
0 O 0 0 1/2 12 0 0
0 0 0 0 1/4 3/4 0 O
0 o0 0 0 1/8 5/8 1/4 0
0 0 0 0 0 1/2 1/2 0
0 0 0 0 0 0 1 0
L0 O 0 0 0 0 0 1]

The Bézier point 135,0 e.g. is given as
bso=1/3.dy+7/12.ds+ 1/12. d, .

Inspection of the above table again verifies that the Bézier polygon is obtained
out of the control polygon by a corner cutting process. In particular, this
implies the convex hull and variation diminishing property. This is true in
general for geometrically continuous spline curves with nonsingular totally
positive connection matrices [27], [37]. A

EXAMPLE 5.3: Next we consider the B-spline of Example 3.4. The
transformation matrix M is given by

1 0 O 0 0 0 0 O

0 1 1/2 1/4 0 0 0 0

0 0 1/2 55/104 1/13 0 0 O

0 0 0 23/104 851/936 23/216 O O

M = , 79

0 0 O 0 1/72 121/216 1/8 O (19

0 0 O 0 0 1/3 5/8 0

0 0 O 0 0 0 1/4 0

0 0 O 0 0 0 0 1
and the barycentric coordinates of the Bézier points 53,0, ey 137’3 w.r.t. the B-
spline control points d,, ..., d, are given by the rows of the following table :
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[1 0 0 0 0 0 0 0]
0 1 0 0 0 0 0 0
0 1/2 12 0 0 0 0 0.
0 1/4 55/104 23/104 0 0 0 0
0 0 29/52 23/52 0 0 0 0
0 0 3/26 2326 0 0 0 0
0 0 1/13 851/936 1/72 0 0 O
0 o 0 23/24 124 0 0 O (80)
0 0 0 2372 49/72 0 0 O
0 0 0 23/216 121216 1/3 0 0
0 o0 0 0 12 12 0 0
0 0 0 0 14 34 0 0
0 o 0 0 1/8 58 1/4 0
0 0 0 0 0 12 12 0
0 0 0 0 0 0 1 0
L0 O 0 0 0 0 0 1]

A comparison of the tables in Example 5.2 and Example 5.3 also illustrates
the well-known effect of varying the shape parameter B, at x, from 0 to 20 :
First of all, the shape of the curve is only altered locally, i.e. Bézier points far
out ‘are left unchanged. Secondly, when raising the tension parameter
B, at x,, the nearby Bézier points are moved towards d, so that the joint

F(ts) is attracted to the control point d,, M

Note that the output of Algorithm 5.1 is invariant under affine maps.
Therefore the given results hold not only for universal splines but for any
spline F in & (T, C). Thus Algorithm 5.1 really provides a complete
solution to the above stated problem of constructing the Bézier polygons of
a geometrically continuous spline curve of arbitrary degree and arbitrary
shape parameters from the spline control polygon.

As a corollary, Algorithm 5.1 also provides an explicit representation of
the locally supported basis functions N/(u), i =0, ...,m with

F(u) = i NP (u).d;. @1

In fact, the Bézier ordinates of N[ (u) are given by the i-th column of
Table (78) and Table (80), respectively :

EXAMPLE 5.4 (Locally supported basis functions): The normalized B-
spline N3(u) of Example 3.3 has the Bézier ordinates

bs’o = 1/12, bS,l = 1/4, b5,2 = 3/4, b5,3 = 7/12

8
boo=T/12, ber =112, bsr=1/4, bgs=1/8 ¢2)
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d*
dg ! e
ds=f (0,1,2)
di
l*
0 a3 =f (1,2,3)
di=f (3,U
=t (234) BT 02Y

dy=f (2,4,5)

Figure 4. — Inserting the new knot u = 3.

while the normalized B-spline N}(u) of Example 3.4 has the Bézier ordinates

bs’o = 1/72 3 bS,l = 1/24, b5’2 = 49/72, b5’3 = 121/216

83
beo=121/216, bg,=1/2, bgr= 1/4, bgs 1/8 (83)

Il
fi

6. KNOT INSERTION

Knot insertion algorithms for cubic B-splines have been given in [11}, [24],
[25], [48], [49]. [11] uses a geometric construction while [48] and [49] use the
theory of discrete B-splines. [13], [29], and [47] extend these results to
quartics and quintics. However, a knot insertion algorithm for geometrically
continuous spline curves of arbitrary degree has previously been unknown.
We will now use the results of the previous sections to give such a knot
insertion algorithm for geometrically continuous spline curves of arbitrary
degree and arbitrary shape parameters.

In fact, using our results of the preceding sections, knot insertion becomes
almost trivial. Suppose that a new knot u with # < u <ty | is to be inserted
in the knot vector of a universal spline F of arbitrary degree n. Theorem 4.1
tells us that the new control points d* are given by intersecting osculating

flats at the old knots z; with certain osculating flats at the new knot
u. All we have to do therefore is to determine the osculating flats
Oscy Fyp(u) at the new knot ». But according to (47), Osc Fy(u) is given by
the Bézier points of Fy; w.r.t. the interval [u, ¢y, ,]. These Bézier points can
be obtained from the Bézier points of Fp w.r.t. [#, ¢y, ;] by simple de
Casteljau subdivision. This leads to the following algorithm :
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ALGORITHM 6.1 (Knot insertion) : Suppose that the Bézier points of the
universal spline F are expressed in barycentric coordinates w.r.t. the spline
control points dy, ..., d,, according to Algorithm 5.1. In order to insert a new
knot u with ty <u <ty do the following :

e Use de Casteljau subdivision to subdivide Fy at u and to compute the
Bézier points b, ....,b §, of Fy wr.t. [ty,u] and the Bézier points
b 1,05 b 10 of Fpwert. [u, ty ]

o Compute the new control points dF over the refined knot vector

T*: (tO’ ~":tfyu)te+19"'stn+m+1) (84)

according to Theorem 4.1 as

df = f(tF 0, nt,) . ® 35
_ d
ds = (4,5.6) o d dy=£ (0,1,2)
dy
dg

f (1,2,3)

dy=f (1,2,4)

f (2,3,4)

dy=f (2,4,5)

Figure 5. — Multiple knot insertion and evaluation at u = 3.

Theorem 4.1 implies that for £ —n+ 1 <i <{ the new control points
d¥ are of the form

d‘i* =a;(u).d;+ (1 —a;(u)).d;_, (86)

where a;(u) is a rational function in z. Note that for » = 3 the knot insertion
algorithm in [11] is a special case of Algorithm 6.1. If F is parametrically
C*.continuous, the functions @, (x) become affine in u, and Algorithm 6.1
reduces to the insertion algorithm [9] for B-splines.

Similar to our results in the previous sections, the output of Algorithm 6.1
is again affinely invariant. Therefore the results of Algorithm 6.1 not only
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hold for universal splines, but carry over to any spline F in (T, C). In
other words : Algorithm 6.1 is in fact a knot insertion algorithm for any
given geometrically continuous spline curve of arbitrary degree and
arbitrary shape parameters.

We conclude this section by mentioning that multiple knot insertion yields
an evaluation algorithm for geometrically continuous spline curves of
arbitrary degree. This follows from the fact that successive knot insertion
will eventually compute the expression f(u,...,# ) which is equal to the
function value F (). In the case of parametrically C*continuous splines the
resulting evaluation algorithm reduces to the well-known de Boor algorithm
for the evaluation of a B-spline curve. For geometrically continuous spline
curves of arbitrary degree this algorithm is new.

7. MAPLE IMPLEMENTATION

Our algorithms for computing with geometrically continuous spline
curves of arbitrary degree have been implemented using Maple, a symbolic
computation system designed and implemented at the University of
Waterloo. In this section we briefly discuss the data structures and the
general setup of our program. We focus on our algorithm for computing the
Bézier points of a geometrically continuous spline curve from the given
control points.

The Bézier points b, ¢, ..., b, , of the i-th segment F, = FI[,“ ., depend
linearly on the control points &, _, ,, i.e. we have

bt,O dz—n
P =4, | 87
b, » d

where the (n+1)x (n+ 1)matrix A4, depends on the knots
L _p41s -1, 4p on their multiplicities, and on the connection matrices at
these knots. In order to compute 4, our program starts out by setting up the

universal spline F, _,,,,,,; over the interval [¢,_,,,?,,,] in Bézier

representation. The computation of this universal spline only depends on
the knot multiplicities in the subsequence

[ G/ SN SRR TRV S I (88)

For n = 3 e.g. the possible knot configurations of the left knots z, _,, ..., ¢,
are given by the sequences

(t1~2= I, =tl)’ (zl—2<ll-1 = tt): (tx—Z = tt—1<tl)’ and
(4, _,<t,_1<t), (89)
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i.e. there are 2"~ ' = 4 different configurations. Combining the possible
configurations to the left and to the right we see that there are
22"-2 = (2"~ ')? different knot configurations totally. These different
configurations are indexed by the knot multiplicities. For #n = 3 e.g. the
index (2, 1; 3) corresponds to the knot sequence

(ti—2=ti—1<li<ti+1=ti+2=ti+3)‘ (90)

Our program sets up the universal spline F li-n+1,i4+n) Separately for each
configuration. Using Algorithm 5.1 the program then computes an explicit
expression for the matrix A4; that only depends on the sequence of knot
multiplicities and the entries of the connection matrices. These results are
then stored in a look-up table that is indexed by the possible sequences of
knot multiplicities as explained above. Using the conversion routines from
Maple to C that are provided by Maple 4.4, and using awk, these look-up
tables are then converted to C** code. Since evaluation of the matrices
A; in the look-up tables only requires multiplications and divisions, the
evaluation of these matrices is then fast enough to be used for interactive
applications written in C**.

8. CONCLUSION

This paper has introduced the concept of universal splines and shown how
universal splincs Icad to ncw algorithins and techniques for computing wiih
geometrically continuous spline curves of arbitrary degree. Using a projec-
tively invariant formulation of the continuity conditions between adjacent
segments it is possible to extend the concept of universal splines from affine
to projective invariance. Preliminary investigation suggests that it will hence
be possible to generalize the constructions of this paper from polynomial to
rational splines. Other objects of study include triangular patch surfaces and
algebraic curves. It will be interesting to determine whether the techniques
of this paper can be further extended to handle these geometric objects as
well.
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