@article{M2AN_1992__26_1_137_0, author = {Barnhill, R. E.}, title = {Geometry processing : intersections, contours, and cubatures}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {137--147}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {1}, year = {1992}, mrnumber = {1155004}, zbl = {0752.65103}, language = {en}, url = {http://www.numdam.org/item/M2AN_1992__26_1_137_0/} }
TY - JOUR AU - Barnhill, R. E. TI - Geometry processing : intersections, contours, and cubatures JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1992 SP - 137 EP - 147 VL - 26 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1992__26_1_137_0/ LA - en ID - M2AN_1992__26_1_137_0 ER -
%0 Journal Article %A Barnhill, R. E. %T Geometry processing : intersections, contours, and cubatures %J ESAIM: Modélisation mathématique et analyse numérique %D 1992 %P 137-147 %V 26 %N 1 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1992__26_1_137_0/ %G en %F M2AN_1992__26_1_137_0
Barnhill, R. E. Geometry processing : intersections, contours, and cubatures. ESAIM: Modélisation mathématique et analyse numérique, Topics in computer aided geometric design , Tome 26 (1992) no. 1, pp. 137-147. http://www.numdam.org/item/M2AN_1992__26_1_137_0/
[1] A Marching Method for Surface/Surface Intersection, Comput. Aided Geometric Design, 7, pp. 257-280. | MR | Zbl
and (1990),[2] Computer Aided Geometric Design, Approximation Theory VI : Volume 1, C. K. Chui, L. L. Schumaker and J. D. Ward (eds.) pp. 33-52. | MR | Zbl
(1989),[3] The Approximation of Non-degenerate Offset Surfaces, Comput. Aided Geom. Design, 3, pp. 15-43. | Zbl
(1986),[4] Visuaily Smooth Interpolation with Triangular Bézier Patches, Geometric Modeling : Algorithms and New Trends, Gerald Farin (éd.), SIAM, pp. 221-233. | MR
(1987),[5] A Survey of Contouring Methods Technical Report, University of Utah, Department of Mathematics.
(1980),[6] Contours of Three and Four Dimensional Surfaces, University of Utah, Department of Mathematics, Masters Thesis.
(1983),[7] Contouring Trivariate Surfaces, Arizona State University, Department of Computer Science and Engineering, Masters Thesis.
(1990),[8] Curves and Surfaces for Computer Aided Geometric Design :A Practical Guide, Gerald Farin (ed.), Second Edition, Academic Press. | MR | Zbl
(1990),[9] Numerical Contour Intégration, University of Wisconsin, U. S. Army Mathematics Research Center Report No. 519, October, pp. 1-81, Ph. D. Thesis.
(1964),[10] Adaptive Triangular Cubatures, CAGD Report 80/3 and movie, Department of Mathematics, University of Utah, September 1980. Surfaces, Special issue of Rocky Mountain J. Math., R. E. Barnhill and G. M. Nielson, (eds.), January 1984, vol. 14, pp. 53-76. | MR | Zbl
and (1984),[11] Geometry Processing : Numerical Multiple Integration. Mathematics of Surfaces III, D. C. Handscomb, ed., Oxford University Press, pp. 49-69. | MR | Zbl
and (1989),