Geometry processing : intersections, contours, and cubatures
ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 1, pp. 137-147.
@article{M2AN_1992__26_1_137_0,
     author = {Barnhill, R. E.},
     title = {Geometry processing : intersections, contours, and cubatures},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {137--147},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {26},
     number = {1},
     year = {1992},
     mrnumber = {1155004},
     zbl = {0752.65103},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1992__26_1_137_0/}
}
TY  - JOUR
AU  - Barnhill, R. E.
TI  - Geometry processing : intersections, contours, and cubatures
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1992
SP  - 137
EP  - 147
VL  - 26
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1992__26_1_137_0/
LA  - en
ID  - M2AN_1992__26_1_137_0
ER  - 
%0 Journal Article
%A Barnhill, R. E.
%T Geometry processing : intersections, contours, and cubatures
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1992
%P 137-147
%V 26
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1992__26_1_137_0/
%G en
%F M2AN_1992__26_1_137_0
Barnhill, R. E. Geometry processing : intersections, contours, and cubatures. ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 1, pp. 137-147. http://www.numdam.org/item/M2AN_1992__26_1_137_0/

[1] R. E. Barnhill and S. N. Kersey (1990), A Marching Method for Surface/Surface Intersection, Comput. Aided Geometric Design, 7, pp. 257-280. | MR | Zbl

[2] R. E. Barnhill (1989), Computer Aided Geometric Design, Approximation Theory VI : Volume 1, C. K. Chui, L. L. Schumaker and J. D. Ward (eds.) pp. 33-52. | MR | Zbl

[3] R. Farouki (1986), The Approximation of Non-degenerate Offset Surfaces, Comput. Aided Geom. Design, 3, pp. 15-43. | Zbl

[4] B. R. Piper (1987), Visuaily Smooth Interpolation with Triangular Bézier Patches, Geometric Modeling : Algorithms and New Trends, Gerald Farin (éd.), SIAM, pp. 221-233. | MR

[5] L. M. Brieger (1980), A Survey of Contouring Methods Technical Report, University of Utah, Department of Mathematics.

[6] C. S. Petersen (1983), Contours of Three and Four Dimensional Surfaces, University of Utah, Department of Mathematics, Masters Thesis.

[7] B. Bloomquist (1990), Contouring Trivariate Surfaces, Arizona State University, Department of Computer Science and Engineering, Masters Thesis.

[8] G. Farin (1990), Curves and Surfaces for Computer Aided Geometric Design :A Practical Guide, Gerald Farin (ed.), Second Edition, Academic Press. | MR | Zbl

[9] R. E. Barnhill (1964), Numerical Contour Intégration, University of Wisconsin, U. S. Army Mathematics Research Center Report No. 519, October, pp. 1-81, Ph. D. Thesis.

[10] R. E. Barnhill and F. F. Little (1984), Adaptive Triangular Cubatures, CAGD Report 80/3 and movie, Department of Mathematics, University of Utah, September 1980. Surfaces, Special issue of Rocky Mountain J. Math., R. E. Barnhill and G. M. Nielson, (eds.), January 1984, vol. 14, pp. 53-76. | MR | Zbl

[11] R. E. Barnhill and S. H. Watson (1989), Geometry Processing : Numerical Multiple Integration. Mathematics of Surfaces III, D. C. Handscomb, ed., Oxford University Press, pp. 49-69. | MR | Zbl