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K M ' W j MODâiSATION MATHÉMATIQUE ET AHALYSt NUMÉRIQUE

(Vol. 26, n° 1, 1992, p. 113 à 135)

CURVE MESH FAIRING AND GC2 SURFACE INTERPOLATION

by H. NOWACKI O, P. D. KAKLIS 0) and J. WEBER O

Abstract. — A two-stage meihod for générât ing a fair surface from discrete, noisy data is
present éd. First, an approximating regular curve mes h is fïtted through the given m x n point
data set minimizing a fairness functional subject to maximum, déviation inequality constraints.
This results in a faired orthogonal mesh of curves. Second, a curvature continuous surface is
interpoîated through the curve mesh by means of a Boolean sum construction. The Bèzier surface
equivalent o f this method was implemented and verifiedby test examples, which demonstrated the
effectiveness of this surface fairing approach.

Résumé. — Réseau de courbe d'ajustement et interpolation GC 2de surface. On présente une
méthode à deux étapes pour générer une surface ajustée à partir de données discrètes en présence
de bruit. En premier on ajuste un réseau régulier de courbes par rapport aux m y. n points donnés
par minimisation d'une fonctionnelle de « régularité » sous des contraintes de type distances
maxima. Cela donne un réseau régulier et orthogonal de courbes. Ensuite une surface à courbure
continue est interpolée par ce réseau de courbes au moyen d'une construction de sommes
Booléennes. La surface de Bézier équivalente obtenue par cette méthode a été implémentée et
vérifiée à l'aide d'exemples tests, qui démontrent l'efficacité de cette approche d'ajustement de
surface.

1. INTRODUCTION

This article présents a two-stage method for achieving a fair surface from
noisy data : fïrst, a mesh of curves, interconnected at their intersection
points and treated as an elastic continuüm, is faired on the basis of a strain
energy criterion. Second, a Boolean sum surface is interpoîated through the
resulting mesh curves, ensuring curvature continuity at cross patch bound-
aries. Thus a fair, GC 2 continuous, surface is generated.

This work was motivated by the expérience of the first of the authors
regarding the diffîculty in achieving fair surfaces by single-stage procedures.
In earlier work by Nowacki and Reese (1983) it had been attempted to
develop a fair surface from given data points by applying a strain energy

0) Technische Universiteit Berlin, Fachbereich 12 Verkehrswesen, Institut fur Schiffs- und
Meerestechnik, Sckr. SG 10, Salzufer 17/19, Geb 12, D-1000 Berlin 10.
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114 H. NOWACKI, P. 0 . KAKLIS, J. WEBER

minimization to the surface patches and using a Coons Cartesian product
interpolation of the data. The expérience was that, whenever the data points
were not prefaired and exhibited tendencies that caused unfair boundary
curves, or mesh lines, then the resulting surface would also suffer from
fairness flaws. The application of the surface fairness criterion alone did not
prevent local defîciencies. This suggested that the quality of the input curve
set should be improved by a fairing process before interpolating a surface.

This approach is further in good conformance with manual design practice
where surface définitions are usually produced from drawings in which
suitable sets of curves are faired and adjusted until the curves are consistent
with each other and promise to yield a fair surface. In the current approach,
ail curves in the mesh are faired simultaneously so that the problem of
consistency does not arise.

The Boolean sum approach of interpolation with curvature continuity
(GC2) was newly developed by Weber (1990). It nécessitâtes fairly high
degrees in the polynomial surface représentation, strictly degrees of 15 by 15
in the regular mesh case, but it ensures that fairness quaHties present in the
curve mesh are retained by the surface. Thus the two stages of mesh fairing
and surface interpolation cornbined promise to yield surfaces of very high
fairness quality. This hypothesis was tested and verified by the methods
implemented and the examples examined in this work.

2. CURVE MESH FAIRING

2.1. History, State of the Art

In the spline literature the problem of fairing (= smoothing) 3D noisy
data by using bivariate splines has been addressed by numerous authors.
Not attempting a complete bibliography, one should refer to the works of
Anselone and Laurent (1968), Nielson (1973, 1974), Hayes and Halliday
(1974), Wahba (1979, 1983, 1984), Utreras (1979, 1987), Wahba and
Wendelberger (1980), Dierckx (1981, 1982), Dyn and Wahba (1982), Cox
(1984), Hu and Schumaker (1985, 1986) and the références cited therein (l).
In the majority of the afore-mentioned works, the fairing problem is
formulated as a minimization problem of the form : find the unique
minimizer s e X of the objective functional: /fair(j) + A/near(.y), where
Ifmr(s) is a functional measuring the fairness of the fairing bivariate spline s,
e-g*> jffair = (5xx+ sxy + syy) dx dy in the case of the so-called «thin-

plate » or « Laplacian » smoothing splines, Inear(s) is a functional measuring

(') See also the well known survey papers of Schumaker (1976) and Barnhill (1977).
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CURVE MESH FAIRING AND GC 2 SURFACE INTERPOLATION 115

the nearaess between the noisy and the faired data (/near is usually the
average sum of the square Euclidean distances between the noisy and the
faired data), and X is a function space sufficiently rich to work with, e.g., X
is the Hubert space H1. Finally, À is a real parameter controlling the tradeoff
between the fairness of the solution and the nearness to the noisy data. This
parameter can be either user speeified, in which case the fairing problem is a
linear one, or determined in the context of a statistically oriented criterion,
such as the GCV (= Generalised Cross-Validation) criterion (see, e.g.,
Wahba (1979)), which incorporâtes both the noisy and the faired data set,
thus rendering the fairing problem non-linear.

The curve mesh fairing approach, apparently introduced by Hosaka
(1969), is a two stage fairing process. At the fïrst stage, the noisy data set is
faired by constructing the so-called fairing curve mesh h, which, in analogy
with the fairing bivariate spline, minimizes a functional of the form
f̂air(A) + ^nearW- At the second stage, the faired bivariate spline is

obtained by interpolating the so obtained faired data. In Hosaka's work (2),
which adopts a mechanical interprétation of the curve mesh fairing problem,
Jfair(/2) represents the elastic strain energy contained in the mesh curves,
considered as elastic beams of constant stiffness. Furthermore, IncàT(h) is
the weighted sum of the square Euclidean distances between the noisy and
the faired data, the weights being interpreted as the stiffness factors of
elastic springs attached to the data points, and, fmally, the smoothing
parameter À is but the inverse of the constant stiffness of the mesh curves. It
is not known to the authors whether Hosaka published any numerical results
with his method. In this connection, Kakishita (1970), Goult (1985) and
Nowacki et al. (1989) have developed and computationally implemented
linearized versions of Hosaka's work.

2.2. À curve mesh fairing criterion : formulation and vvell-posedness

This section deals with the présentation and theoretical investigation of a
new curve mesh fairing criterion for fairing three-dimensional noisy data
defmed on a rectangular and noise free grid in the physical (x, j)-plane. The
apparent novelty of this criterion résides in the combination of the curve
mesh concept and the concept of fairing in a statistical framework
introduced by Reinsch (1967, 1971). Let us begin with the formulation of
the fairing criterion as a constrained minimization problem, henceforth
referred to as

The curve mesh fairing problem. Given a set of data {(xJ9 yf, z^),
i = 1,..., NJ = l,.,., M,x{ -<x2 < • • < xMfy{ < y2 < • - . *<yN}> with the

(2) Hosaka's method is also described in detail in the textbooks by Ding and Davies (1987)
and Su and Liu (1989).
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116 H NOWACKI, P D KAKLIS, J WEBER

z-components of the interior data (i = 2, ..., N — l9 j = 2, ..., M — 1) (3)
being considered as noisy, the noise having normal density distribution, zero
mean and equal variance a2. Find a curve mesh h = {(x, yl9 hxl{x)),
hxl(x)e C2[xuxM], i = 19...9N9 (xJ9 y, hyj(y))9 hyj(y) e C2[yl9yN]9

j — 1, ..., M }, which minimizes the fairness functional

N ÇxM M ÇyN

i = 1 J *1 y = ! J _y j

dy, (1)

and satisfies the following constraints :

(i) The accuracy constraint.

h„ {x,) - zy )2 - e ̂  0 , (2a)

o-2(/c - V2^) ^S^<J\K + V2T) , K = (N - 2)(M - 2) s* 2 .

(ii) 7%e interior compatibility constraints :

hxXx}) = hy](yt) . (3)

(iii) The type-I {or - / / ' ) boundary constraints :

hxl(x,)=zlJ9 A ^ ( ^ ) = r f j a j ( o r A ^ ( ^ ) = 0 ) , 1 = 1 , . . . , ^ , 7 = l , M ,
(4a)

A w ( ^ f ) = z v , A; j(y l) = rfw(or*;y(yI)=0), i = U , j = l } . . . , M ,

(46)

^ y 5 i = 1, ..., jV, j — 1, M, and dyip i = 1, iV, j = 1, ..., M, being given
fini te real numbers.

In order to examine the well-posedness of the above problem we appeal
to the following resuit due to Wong (1984).

LEMMA 2.2.1 : Let V a reflexive Banach space, K a closed convex set in V
with non-empty interior, S a strictly normed Banach space, T:V->S a
bounded linear operator such that T(V) is closed in S, and A : V —> R^ a
continuons linear map from V onto R ,̂ such that Null {A) n
NullÇT) = {0} . Then the constrained minimization problem :

minimize || Th || \ subject to : h e X = K n {h e V : Au = r } , (5)

admits of a unique solution if X =£ 0.

(3) Within sections 2 2 and 2 3 the following notational convention is adopted if the range
of 1 and/or j is not exphcitly given then / = 2, , N — 1 and/or j = 2, , M — 1
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CURVE MESH FAIRING AND GC 2 SURFACE INTERPOLATION 117

In order to apply the above lemma, we first define the working space
V = Vx x Vy9 where V. = H\l.) X • • - x (N or M times) x • • • x H2(I%),
I% = (#ls mL) with • = x or y, and L — M or N, respectively. Space V is
endowed with a norm as follows : let h — (h^ hy) with
h.= {h.l,...,h.t)eV, then \\h\\ y = \hx\ ^ + \\hy\\y with | | / * . | | F . =

Z ll^#f II H2(i w n e r e l l ^ l l j ï 2 = Y. 11^ IIL2 ^ n e s P a c e ^ is a reflexive
£ = 1 * k = Q

Banach space for it is defmed as the cartesian product of a fînite number of
reflexive Banach spaces (see, e.g., Kufner et al (1977, § 0.16 and § 5.4)).

Second, we introducé the set

K = \h e V :hx,(Xj) = h„(y,) , Y V (hx,(Xj) - ztJ)
2 - e « o) . (6)

The set K is non-empty for any curve-mesh consisting of cubic splines which
interpolate the set of the interior noisy data belongs to K. Furthermore, by
virtue of the Cauchy-Schwarz inequality and the fact that V is the cartesian
product of a finite number of proper subspaces of C°(Im)(H2(I9) a
C{(Im)), one can easily prove that K is also convex and closed.

Third, we define the space S = Sx x Sy9 with S9 - L2(I.) x • • - x (N or M
times) x • • * x L 2(/#). Space S is endowed with a norm by simply replacing
H2by L2in the définition of the norm in the working space F. Furthermore,
S is strictly normed (or strictly convex or rotund), which implies that
L2 is a strictly normed space (see, e.g., Singer (1970, p. 111).

Fourth, we introducé the operator T : V -• S as follows : Th = h " with
hT = (A;, * ; ) , K = (*;,, -..,* ;L). Recalling the définition of \\m\\v and
|| • || ̂  it is readily inferred that r i s a bounded linear operator from Kinto S.
As regards the question on the closedness of T(V) in S9 the answer is in the
affirmative since the équation d2h/dx2 = g is solvable in //2(0, 1) for any
g e L2(0, 1), which in its turn implies that d2fdx2 is surjective on
L2(0, 1).

Fifth, we introducé the linear operator A:V-^Rq, q = 4(TV + M)9

defmed as follows :

Ah= {hxt(^Xhf
xl(x)(or0) , x = xl9xM9 i = l,...9N9

hyj(y), h'yj(y)(or 0) , y =yuyN, j = 1,..., M } ,

according as type-/ (or -II ') boundary constraints are imposed. Exploiting
the imbedding relation H2(Im) a Cl(I9), we can easily prove that A is a
bounded linear map from V into Rq. Furthermore, the problem : given an
r e Rq fïnd an h G V : Ah — r, is solvable by the curve mesh of cubic

vol 26, n° 1, 1992



118 H. NOWACKI, P. D. KAKLIS, J WEBER

polynomials which satisfy the type-/ (or -II') boundary conditions specifled
by the vector r. Thus A is also onto R .̂

In conclusion, the previously defined spaces V, S, the set K and the
operators Tand A fulfïll the requirements cited in Lemma 2.2.1, and, on the
other hand, the minimization problem (5) resulting from them is but the
curve mesh fairing problem in the space V. Accordingly, we can state.

THEOREM 2.2.1 : The curve mesh fairing problem possesses a unique
solution in the space V.

2.3. Construction of the Solution

In this section a process is developed for constructing the unique solution
of the curve mesh fairing problem (see Eqs. (l)-(4)). To start with, we note
that 7fair and 7acc are quadratic functionals, whereas the compatibility and the
boundary constraints are linear ones. The curve mesh fairing problem may
then be considered as a convex-programming problem (see, e.g., Ioffe and
Tihomirov (1979, chap. 1.1.2)). In other to treat this problem by means of
the Kuhn-Tucker theorem, we fîrst note that /fair(^) and Iacc(h) are Fréchet
differentiable everywhere in V, which can be easily proved by exploiting the
définition of | | • || v, the imbedding relation H2<^ C\ and the Cauchy-
Schwarz inequality. Furthermore, the Fréchet derivatives of /fair(^)
Iacc(h) are given by the formulae

êh = 2 2, dhxÀX) KM

and
hxl(x}) - z ) 8hxl(x}) , (106)

respectively. Finally, the so-called Slater condition is satisfied by the cubic
curve-mesh which interpolâtes the noisy data and satisfles the boundary
conditions (4). Then, recalling a stronger version of the Kuhn-Tucker
theorem we are led to.

THEOREM 2.3.1 :IfheX= {he V : constraints (3), (4) are fui f il led}
is a solution of the curve mesh fairing problem, then it is necessary and
sufficient that there exists a Lagrange multiplier A 5= 0 such that, for any
8 h e V with h + 8 h e X, the following inequalities hold

ôh + AAacc(/ï) Sh = 0, (lia)

^ 0 , A / a c c ( / 2 ) = 0 . (llb)

M2 AN Modélisation mathématique et Analyse numénque
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CURVE MESH FATRING AND GC 2 SURFACE INTERPOLATION H 9

Let us now restrict ourselves t o a C 2 spline subspace F* of F. Performing
then twice intégration by parts in (lia) and taking into account the
Lagrange lemma, as well as that that 5/z* satisfies the constraints (3), (4),
and that 8h*xl(Xj) are in gênerai linearly independent, we finally get that
(lid) is equivalent to the following set of equalities

+ A(A. X I (^ ) -z y ) = 0 . (12)

Summarizing the hitherto obtained results, we state

COROLLARY 2.3.1 : If h*tX*= { / i6F*: constraints (3), (4) are
f ui f il led} is a solution of the curve mesh fairing problem, then it is
necessary and sufficient that htxli i = 1, ..., N and hnyp j — 1, ..., Af, are
C2 cubic splines and a Lagrange multiplier A === 0 exists so that (llb) and
(12) are fulfilled.

The boundary cubic splines hmxl, h^xN and h+yU h^yM are uniquely
determined by the C2 continuity requirements and the boundary conditions
(4). From now on we shall confine our attention to determining the interior
cubic splines. For this purpose, we fïrst adopt the following cubic spline
représentation :

- qx) + gJ + lqx+A2
XJg;F(l - qx) + A%g^x F(qx) , (13)

where x s (xp xJ + l), AXj =xJ + l - xp qx= (xJ + l~ Xj)/A^ a n d F(q) =
(q3 - q)/6. It can easily be seen from (13) that Kxl(Xj - ) = Kxi(xj + ) a r e

sufficient conditions ensuring that hxl e C2[xu xM]. Combining these con-
ditions with équations (12) and taking into account the boundary constraints
(4), we get after some straightforward but elaborate algebra the following
matrix équation :

MxlHf+Mxf)Zj=Bx
r, (14)

when Zf is an (N — 2) x (Af— 2) matrix containing the faired z-compo-
nents of the interior noisy data, Hx is an (N~2)x (Af—2) matrix
containing the second order jc-derivatives of the faired curve mesh
h* at the interior grid points and Afxl9 Mxl are two (Af - 2) x (Af - 2)
symmetrie and tridiagonal matrices, the non-zero éléments of which are
given by the following formulae :

+ l =-l/AXJ, (15a)

= 3/2 AxX + 1/A^ , ( A f c 0 ) M . XtM_} = 3/2 AX>M_ , + l/Ax>M_2,

(15b)

vol 26, n° 1, 1992



120 H. NOWACKI, P. D. KAKLIS, J. WEBER

)JJ _ ! = Axj _ J6 , (MX2)JJ = AxJ _ J3 + Axj/3 ,

) j J + l =Axj/6, (16a)

(Mx2)22 = AJ4 + Ax2J3 , (Mx 2)^„ U M _ ! = 4, i A ,_ ,/4 + 4c.*-2/3 , (166)

with 7 = 3, ..., Af — 2. Finally, Bx is an (N — 2) x (M - 2) sparse matrix
expressing the influence of the boundary conditions (4). Choosing the cubic
spline représentation (13) for h*yJ(y), j = 1, ..., M, and working similarly,
we arrive at the following matrix équation

My2 H f + My0 Zj = B^ (17)

the matrices My0, My2 and By being defmed with direct analogy to
Mx0, Mx2 and Bx, respectively. Rewriting now équations (12) in the context
of the cubic spline représentation (13) and combining the resulting set of
équations with the matrix équations (14) and (17), we get the following
matrix équation for Zf :

ZfMR + MLZf + AZy = AZ + B, (18)

where Z is an (N - 2) x ( M - 2) matrix containing the z-components of
the interior noisy data and

MR = Mxö Mxl
x MxQ + BGx , ML = MyQ My2

l M^ + BGy . (19)

Finally, B, BGx, BGy are sparse matrices expressing the influence of the
boundary conditions (4). More specifically, in the case of type-I boundary
conditions BGx is an (M — 2) x (M - 2) diagonal matrix whose non-zero
éléments are given by

(BGx)22 = 31 A\x, (BGx)M_XtM_x = 3 / 4 „ _ ! , (20)

whereas in the case of type-IF boundary conditions BGx dégénérâtes to the
null matrix. Obviously, a directly analogous statement can be made for
BGy

Let us now investigate the well-posedness of the matrix équation (18). At
first, relations (15) and (16) readily imply that Mx2 is positive defînite and
Mço is non-negative defînite. To examine whether zero is an eigenvalue of
Mço we appeal to a well known resuît of Taussky (1948) stating that, if a
matrix is irreducible and an eigenvalue lies on the boundary of one of the
associated Gerschgorin circles, then it should lie on the common boundary
of ail Gerschgorin circles. By virtue of relations (16) it can easily be seen
that 0 + 10 is not a common boundary point of all the Gerschgorin circles of
MXQ. On the other hand, Mx0 is irreducible for it can be obtained by
replacing zero entries of an irreducible matrix, namely the matrix

M2 AN Modélisation mathématique et Analyse numérique
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CURVE MESH FAIRING AND GC SURFACE INTERPOLATION 121

(Mx2)hJ _, = AXJ _ ,/6 , {Mx2)}] = 0 , (Mx2)J;, + , = AXJ/6 , (21)

by non-zero ones (see, e.g., Lankaster and Tismenetsky (1985, p. 530)).
Thus M^ is eventually positive defmite. The same statement can be clearly
made for My2 and My0. Finally, by virtue of the remarks made above,
BGx and BGy are non-negative definite. Recalling now that, given two
matrices, A, B with À positive definite and B non-singular, then
BAB T is also positive definite (see, e.g., Voyevodin (1983, chap. 9, § 77)),
that the matrices MR and ML are positive definite. Then, standard matrix-
equation theory (see, e.g., Gantmacher (1977, vol. 1, chap. VIII, §3))
yields.

LEMMA 2.3.1 : For every X s= 0 matrix équation (18) possesses a unique
solution.

Next, we investigate the existence of A for which conditions (llb) are

fulfilled. For this purpose, it will suffice to study the properties of

Iacc(Zf(X)) as a function of A. To start with, we set /acc in the form

acc(Z^(A )) = 2̂  (Z(/(A ) ep Zd{X ) ej) , Z^(A ) = Zy(A ) — Z , (22)

where (., . ) dénotes the inner product in RM~2 and eJ9 7 = 1, ...,
M - 2 , is an orthonormal basis in RM~2 given by ex = {1,0, ...,0 } r ,
e2 = {0, 1, ..., 0 } T and so on. Differentiating (22) with respect to A, we find
after some straightforward matrix algebra

dIacc(Zf(X))/dX = - 2 £ (*(CdeJ9£dej) +

+ {ldeJ,MLCdeJ) + ejMR(£j^d)eJ), (23)

where ^ = ( s y # + A/AC)"1 Zd, with M being a linear operator acting on the
space of (N — 2) x (M — 2) rectangular matrices according to the formula
JKm = 9MR + ML; and /the identity matrix of dimension K X K . Recalling
that ML and MR are positive definite matrices, we readily conclude that the
right-hand side of équation (23) is négative for A s* 0. We thus have that
/acc is a strictly decreasing function of A on [0, oo], which in turn leads to

LEMMA 2.3.2 : There exists a unique X in [0, oo ] satisfying inequalities
(lié). If /aoc(Zy(0)) =s0 then X = 0. Otherwise, X is found by applying a
standard Newton-Raphson method to the System of équations

Lemmas 2.3.1 and 2.3.2 yield.

vol 26, n° 1, 1992



122 H. NOWACKI, P. D. KAKLIS, J. WEBER

THEOREM 2,3.2 : The curve mesh fairing problem admits of a unique
cubic spline solution h* in the C2 spline subspace V* of V.

The question naturally arises whether h* coincides with the solution h ôf
the curve mesh fairing problem in the space V, whose existence and
uniqueness has been established in Section 2.2. To investigate this question
we appeal to the following identity

'fairC^* ~ flO + A/accC** ~ 9 ) + Jfair(*O + A/acc(/**) =
A/acc(0), (24)

which is valid for any curve-mesh g e X. The above identity is but the first
intégral relation for the fairing cubic-spline curve-meshes (see Kaklis (1989,
App. 2)). From (24) it is readily inferred that h* minimizes I^\X{Q) +
À7inf(#) in F. On the other hand, h* satisfies by construction the inequality
constraints (116). Theorem 2.2.1 then implies that h* = h.

2.4. Computational Ex périment s

The fairing method developed in Sections 2.2 and 2.3 has been submitted
to extensive Monte Carlo expérimentation. These experiments have been
carried out along the following lines. First, an orthogonal curve mesh
hiâ, henceforth referred to as the idéal curve mesh, is drawn from an idéal
(= noise free) and smooth surface sid defined on a rectangular domain in the
(x,j)-plane. Second, using a Gaussian pseudo-random deviate generator
we insert noise of specifled standard déviation a to the z-components of the
interior data. The so obtained noisy data are then interpolated by the so-
called noisy curve mesh hm which consists of C2 cubic splines satisfying the
type-I (or-II') boundary constraints induced by the idéal surface. Finally,
the noisy data are faired by constructing the faired curve mesh h, as
described in the preceding Section 2.3.

Figure 1 contains the graphical output of a Monte Carlo experiment with
the ship-like C1 surface z = *id)Ship(x, y) = f(x)g(y)9 0 ^ x ^ 12,
0 =s y =s 2, with ƒ (x) - 5 for 0 *= JC, = x/12 ^ 0.4, ƒ (x) « 2.5 -
23.15(x! - 1.3)(JC! - 0 . 4 ) 2 for 0.4 ^ ^ =s 1 and g (y) = 1 - (1 -yx)

10 for
0 ^yx = y/2 === 1 (see Kuo (1971, chap. 3)). The chosen idéal curve mesh
consists of 40 curves (20 uniformly spaced curves along the x- and the y-
direction). Furthermore, a = 0.01, s = O~2(K — \Jl K ) with K = 18 x 18
and boundary constraints of type I have been imposed, the required first-
order boundary derivatives being calculated using z ~ sid ship(*, y). Finally,
A = 1 706.

The fairing criterion formulated in Section 2.2 can be easily extended to
less structured (= scattered) data sets whose spatial distribution is, ho wever,
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CURVE MESH FAIRING AND GC 2 SURFACE INTERPOLATION 123

Figure la.—The noisy curve mesh ha,

X X X X X X X \

tmmn
Figure lb. — The faired curve mesh h.

Figure le. — The idéal (= noise tree) curve mesh hid.

Figure 1. — Monte Carlo expérimentation with a ship-like surface.

adequately regular so that one can adopt the hypothesis that the parameter
knots of all curves of the curve mesh lie on a rectangular grid in the
(u, v )-plane. Under these hypotheses, a curve mesh fairing criterion can be
formulated as follows :

The curve mesh fairing problem (uniform parameter case). Given a set of
data {(xtj, y ij, zi7), i = 1, ..., N9j = 1, ..., Af}, with the interior data being
noisy, the noise having normal density distribution, zero mean and equal
variances a% a^ v\ along the x-, y- and z-direction, respectively. Find a
curve mesh h= [hul-, = (hxuh hyui, hzui)

Te C2[uuuM], / = 1, ..., N,

Kj = ihxvp hyvJ,hsVj)Te C2[vl9vN],j = 1, ...,M}5 with the parameter knots

{W]<:w2<c... uM}y { t ; 1 < t ? 2 < . . . vN} being given, which minimizes the

vol. 26, n° 1, 1992



124 H. NOWACKI, P. D. KAKLIS, J. WEBER

fairness functional Irair(hx) + / f a i r(^) + /fair(/iz), with hm = {(u, vh hmui(u)),
i = 1, ..., N, (uj, v, hmvJ(v)), j = 1, ..., M, • = x,y9 z} and, furthermore,
satisfies the accuracy constraints Iacc(h„ e#) =s 0, with CTI(K — \Jl K) =S

sm ^ CTI(K + \J2 K), the interior compatibility constraints hui(uj) = hvj(v()
and type-I (or-II') boundary constraints.

The numerical performance of the above criterion is illustrated in figure 2
by giving the results o f a Monte Carlo experiment with the glass-like surface
r = sid> giass(

z> 0 ) = / W , 0 ^ z =s 13, 0 ̂  0 === TTS with ƒ (z) being a C1 cubic
spline interpolating the data set {(0,7), (3,1), (11,1), (13,5)} and
satisfying the constraints ƒ (z) = 1, for 3 ̂ z^ 11 and/ ' (0) = 0, / ' (13) =
0.35. The chosen idéal curve mesh consists of 30 curves (10 «meridians »
and 20 « parallels », uniformly spaced). The rectangular grid in the
parameter (w, v )-plane, which is a rather poor approximation in the case of
« parallels », is constructed by using the arithmetic means of chordlengths
between adjacent noisy data. Furthermore, o-J\3 = 0.010, o-yjl — ajl =
0.005, and sm = CTI{K - S/TK) with K = 18 x 8. Finally, type-I boundary-
constraints have been imposed, the required flrst-order boundary parametric
derivatives being approximated using the noisy data lying in the vicinity of
the boundary, and \x= 9.62, A = 3.69, Az = 1.27.

Figure 2a. — The noisy
curve mesh h„.

Figure 2h. — The faired
curve mesh h.

Figure 2c. — The ideal
(= noise free) curve mesh

Figure 2. — Monte Carlo expérimentation with a glass-like surface.

3. GC2 SURFACE INTERPOLATION

3.1- State of the Art

A great variety of surface interpolations schemes has been developed in
recent years for purposes of surface définition in CAD Systems based on
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given data points (discrete case) or curves (transfînite case). These methods
can be classifled by the data set topologies (regular mesh/irregular mesh)
and the level of continuity achieved (parametric/geometric continuity,
first/second order). Hoschek and Lasser (1989) and Farin (1990) give good
overviews of the underlying concepts and available options.

In the majority of cases the GC !, regular mesh case with tensor product
interpolants has been of interest. Many original thoughts go back to Coons
(1961). More recently GC l regular mesh methods have been presented by
Chiyokura and Kimura (1984) and Liu and Hoschek (1989). The latter
authors have formulated necessary and sufficient conditions for GC l

continuity between Bézier patches. Nowacki, Liu and Lü (1988) have
applied this method to the construction of a global patchwork of Bézier
éléments of a ship surface.

The case of GC l continuity for irregular mesh topologies has been well
covered by Sarraga (1987, 1990) and Reuding (1989). These solutions are
based on triangulations of the original data sets.

For the GC2 regular mesh case discrete interpolation schemes were
proposed by Kahmann (1983) and Johansson (1989). Jones (1988) and Hahn
(1989) provided interpolation procedures of GC2 continuity level for fïlling
72-sided holes, which includes the case of irregular mesh topologies.

The method presented here, based on Weber's work (1990), deals with
the transfmite (Boolean sum) interpolation of a curve mesh. The method
was developed for regular and irregular meshes, although only the regular
case is implemented and presented here.

3,2, Problem Formulation

The approach makes use of the assumption that each surface element,
e.g., Coons patch, can be parametrized independently. Thus at boundary
lines between continuous patches the original parametrizations do not
normally match so that appropriate transformations must be taken into
account when stating the continuity conditions, The advantage lies in the
additionai freedom of choosing the transformation function rather arbitrarily
which can be exploited to develop a local method for GC2 surface
construction.

The transition from one parametrization to another is made by a
transformation function and the chain rule. Let T(t) be such a transform-
ation function for a curve f(t) and F - f(T(t)). Then, according to the
chain rule

Ft = f_TTt, Ftt=fTTTf + fTTtt. (25)

For a surface f (R, S) which possesses an alternative parametrization, say
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(R(r, s), S(r, s)), the chain rule yields the following formulae for the partial
derivatives of the reparametrized surface F(r, s) = f(R(r, s), S(r, s)) :

lr =fRRr+f

Err = IRR R* + S* + 2 ƒRS Rr Sr + fR Rrr + f s Srr,

(26)

(27)

and analogously for Fs, Fss and Fsr.
Let us now consider a quadrilatéral surface element (fig. 3) represented

as a Coons Boolean sum patch with the quintic Hermite interpolants
i/0(r), ..., H5(t) with t = r or s. In Coons-like notation this element is
described by

Q(r,s) = RD H0(s) + RI H5(s) + ^0, Hx(s) + Rls**^) +

lS,H4(r) + 05^ ±Srr

(28)
0 j = 0

with

/QO

oo,

1QS!

IQ*

IQs
10

oo.
0Q„

0Q.„

io.„

10.

01..
PJ..,
oi..„

Q0. r

QQ..,

QQrrss

IQms

IQnss ü . . .

iO.„ ü . ,
iO.. ü . .

01.
PJ.,
PJ™

llr,
1 1 ,

0 1

Pi,
Pi,

llss
lis

— I

(29)

The symbols ^0 , R0s, R0ss etc. dénote boundary curves (fig. 3) and cross
partial derivatives of the surface at the boundaries. The matrix B^ contains
information about offsets and partial derivatives at the four patch corners,
including mixed partial derivatives.

BQ

Figure 3. — Coons Boolean-sum patch, notation for patch boundaries.
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We now introducé a quintic Hermite interpolant as a univariate parameter
transformation function of the type

T(a, 6, / ) = aH0(t) + bH5(t) , (30)

where t may be r or s in the surface. T(a, b,t) interpolâtes the end values a
and b and has zero first and second order end derivatives. The fact that T is
itself constructed to be of continuity C2 for a séquence of consécutive curve
segments ensures that any given GC 2 continuity of a curve or its derivatives
before transformation is retained under the transformation (Weber (1990)).
Replacing the partial derivatives Rr Rrn Sn Srr in (26) and (27) by type-T
interpolants and using the Coons patch notation, we obtain the following
expressions for the cross partial derivatives at the patch boundaries after
reparametrization :

i0 Rrn,s) + Ws H ^ , , Sr„, s) , (31)

ÏSrr = ÏSrr T\Rr^ *,„, s) + Ba ^ ( ^ ^ s) +

+ ÏSr T(Rrri0, Rnii9 s) + JSs T(Srri0, S„(l, s) , (32)

and similarly for RJ_S, R[ss, where ij = 0 or 1. The right-hand side partial
derivatives with overbar and underbar are interpreted as partial derivatives
of a neighbouring patch in its own parametrization, whereas the left-hand
side singly barred quantities belong to the patch under investigation. In the
surface construction these partial derivatives must be matched. Note that
some right-hand side doubly barred quantities are boundary curve deriva-
tives which are known when the curve mesh is given. The remaining ones
are cross and mixed partial derivatives which must be found during the
surface construction.

In Weber's method a polynomial représentation is used for the cross
partial derivatives. The polynomial degree is chosen so as to achieve
GC 2 continuity and at the same time arrive at a local problem formulation
for each knot in the mesh. It turns out (Weber (1990)) that, for irregular
mesh topologies, Hermite interpolants of degree seven are necessary to
meet these requirements, whereas for regular mesties, with only two lines
intersecting at a knot (fïg. 4), polynomials of degree five are suffïcient. In
this case a cross partial derivative at the patch boundary can be expressed in
terms of corner point properties, e.g., as follows (z = 0 or 1) :

. (33)
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3.3. Surface Construction

An interpolating GC 2 surface is constructed through a given curve mesh
on the basis of the following conditions :

—- Curve continuity at knots (GC2),
— Matching cross partial derivatives at patch corners,
— Compatibility of mixed partial derivatives.
Only the regular mesh case is treated here. (See Weber (1990) for the

irregular case.) In the implemented examples it was assumed that the curve
segments in the mesh consisted of cubic Bézier curves.

STEP 1 : Curve Matching

Second order geometrie continuity (GC2) for two adjoining curve
segments Ql _ x and Qt + ̂  (fig. 4) requires (for i = 2, 3)

2 Q (34)

z _ Jbt2 = a2 92Ô, + i/o'2 + bt 32 , + Jat . (35)

Figure 4. — Intersecting curves in regular mesh.

This result permits to simplify the form of the curve parametrizations,
équations (31) and (32), further :

iSr =ÏSrT(Rri0,Rriiis)i (36)

iSrr = ÏSrr ̂ (R^, R^ s) + ÏSr Tf^R^ R^9 s) , (37)

etc.
Matching curve segments at the knots therefore yields conditions of the

form

90, + i/3f = ) ; 96, - i/3f = — E, _ ! , (38)
a a

. - I . (39)
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where 92ôz-_i/df2 = af Zi_x + Pt Et_x. For some given curve segment
Ö I - I ( O J the terms Ei_l and Zt_x can be evaluated. The first and second
derivatives of the adjoining curve segment are then found from the above
conditions. In this process the parameters at and (3t are f ree and can be
chosen in some suitable way, say, so as to arrive at a reasonably uniform
parametrization.

STEP 2 : Cross partial derivatives (CPD's)
The CPD's along some patch boundary are represented by Hermite

interpolants in accordance with équation (35), but similarly also for
iSrn Rj_s> Eiss-

The solution procedure assumes that locally, at some knot, these CPD's
are known for two adjoining patches, say A and B in figure 5, and must be
matched up continuously with the other two éléments, C and D, bordering
on this knot. For the CPD's this yields the following types of conditions :

r

Figure 5. — Adjoining patches A, B, C, D.

Matching partial derivatives along the boundary Unes (fïg. 5) :

Ô0r/ = Ï(K* = Tlf = 01? = E2, (40)
S S S S —L ' \ s

and so on for the partial derivatives with respect to r, ss, rr.
Matching mixed partial derivatives :
16 conditions for the mixed partial derivatives from second to fourth

order (from rs to rrss) of the type :

Note that the scalar unknowns which occur inside the transformation
functions of équations (33), (34), e.g., RriQ, /?rril, can be determined by
means of eqs. (38) and (39).

STEP 3 : Compatibility of mixed partial derivatives (MPD's) or « twist »
vectors

It is a well known requirement for surfaces that the result of evaluating an
MDP, in particular at a corner point, should be independent of the séquence
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of differentiations followed. As a special case the familiar twist compatibility
requirement can be stated as

\r = i = ijsï (42)

Similar conditions are obtained for higher partial derivatives.
From the considération that these surface properties must meet certain

continuity requirements at the knots of the mesh, Weber (1990) derived a
set of 16 further vector équations. The resulting matrix équations have
certain rank defïciencies so that four vector unknowns (MDP's) in each
patch can be chosen arbitrarily. The remaining unknowns are then fully
defined by the set of vector équations.

3.4. Examples and Results

Weber's method was implemented for the case of a regular mesh with
cubic Bézier boundary curves. In accordance with équation (32), the surface
element would thus be of polynomial degrees 15 by 15 in gênerai. This
would require 256 Bézier points per patch, in practice a prohibitive number.

To reduce this effort a simplified scheme was implemented by Weber as
follows :

1. The regular mesh area was organized in a chessboard pattern {fig. 6)
into « black » and « white » éléments (0 and 1).

2. The black patches are then represented by polynomials of degree 5 by
15, in order to give all CPD's in one direction and to adjust them to the
neighbour patch only in the other direction.

3. Conversely the white patches have a représentation of degree 15 by 5
so that their given and free boundaries are reversed.

Figure 6. — Chessboard pattern on the regular curve mesh.

As a resuit every boundary line has a neighbouring patch with given and
one with freely adjustable CPD's. This reduces the number of Bézier points
to 96 per patch, still a considérable number. As a further simplification the
mesh was parametrized in a uniform (integer) way.

Under these assumptions several examples were computed to explore the
potential of the surface interpolation method. Figures 7 to 10 show the
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results for a sailing yacht huil form. More specifically, figure 7 shows the
lines of the given curve mesh, whereas figures 8 to 10 present isolines of
normal vector components and of the principal curvatures K X and
K2 of the interpolating surface.

In order to test the efficiency of the two-stage fairing method developed
in Sections 2.2, 2.3, 3.2 and 3.3, a colour raster visualisation scheme has
been implemented for the display of any desired state variables of a surface,
in particular scalar values of the first and second partial derivative
components, normal vector components, principal curvatures, the mean
and Gaussian curvatures, as well as components of the fundamental forms
of differential geometry. Comparison of these colour pictures, before and

Figure 7. — Regular curve mesh for a sailing yacht huU for m.

Figure 8. — Isolines of the z-components of the normal vector.

Figure 9. — Isolines of the first principal curvature KV

Figure 10. — Isolines of the second principal curvature KV
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after fairing, gave évidence of the fairness and continuity properties of the
surface up to a very high degree of resolution. Unfortunately, colour
pictures cannot be reproduced hère. Nevertheless, the following conclusions
can be derived from this évidence as well as figures 1, 2 and figures 7 to 10 :

— The curve mesh prefairing stage results in curvature continuous mesh
lines of high fairness, i.e., with graduai changes in curvature, and a close
correspondence in the shape character of neighbouring curves (see figs. 1,
2).

— The surface interpolation method ensures curvature continuity
(GC 2) at cross patch boundaries. This is demonstrated, e.g., by the smooth
character of the principal curvature patterns shown in figures 9 and 10. This
kind of geometrie continuity is achieved although the local patches are
parametrized independently and hence discontinuously so that the paramet-
ric partial derivatives at patch boundaries in gênerai do not match.

— The fairness quality of the resulting surface is certainly adequate for
manufacturing purposes. Nevertheless in some cases minor imperfections in
curvature patterns become visible at high resolution which seem to stem
from systematic geometrie rather than random numerical influences. The
arbitrary assignment of mixed partial derivatives at the knots in the surface
interpolation method is probably the main cause of these small disturbances.
Further work on this matter, especially with regard to the best chose of twist
vectors, is in progress.

— In conclusion, the available évidence suggests that the combination of
curve mesh fairing and GC 2 interpolation results in fair surfaces of a high
quality when compared to the original data and does ensure curvature
continuity in the resuiting surface.

4. SUMMARY

This article présents a method for achieving a fair surface from noisy data,
consisting of two modules, namely a curve mesh fairing module and a
surface interpolation module. The curve mesh fairing module is formulated
as the minimisation of a fairness functional subject to accuracy (= inequali-
ty) constraints steming from statistical considérations. The surface interpo-
lation module is a transfinite (Boolean sum) interpolation scheme for
constructing curvature continuous (GC2) surfaces interpolating the mesh
provided by the curve mesh fairing module. The resuiting faired surfaces
retain the fairness character of the mesh lines but are not yet totally free of
local shape imperfections, probably due to the arbitrary assignment of
MDP's at the knots. Both modules of this two-stage fairing procedure are
under further development.
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