@article{M2AN_1991__25_6_643_0, author = {Akrivis, G. D. and Dougalis, V. A.}, title = {On a class of conservative, highly accurate {Galerkin} methods for the {Schr\"odinger} equation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {643--670}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {25}, number = {6}, year = {1991}, mrnumber = {1135988}, zbl = {0744.65085}, language = {en}, url = {http://www.numdam.org/item/M2AN_1991__25_6_643_0/} }
TY - JOUR AU - Akrivis, G. D. AU - Dougalis, V. A. TI - On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1991 SP - 643 EP - 670 VL - 25 IS - 6 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1991__25_6_643_0/ LA - en ID - M2AN_1991__25_6_643_0 ER -
%0 Journal Article %A Akrivis, G. D. %A Dougalis, V. A. %T On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation %J ESAIM: Modélisation mathématique et analyse numérique %D 1991 %P 643-670 %V 25 %N 6 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1991__25_6_643_0/ %G en %F M2AN_1991__25_6_643_0
Akrivis, G. D.; Dougalis, V. A. On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 6, pp. 643-670. http://www.numdam.org/item/M2AN_1991__25_6_643_0/
[1] On a conservative, high-order accurate finite element scheme for the "parabolic" equation », in Computational Acoustics, D. Lee, A. Cakmak, R. Vichnevetsky eds., v. 1, 17-26, Elsevier-North Holland, Amsterdam, 1990. | MR
and , «[2] Single step Galerkin approximations for parabolic problems, Math. Comp. 31 (1977), 818-847. | MR | Zbl
, and ,[3] Conservative high order schemes for the generalized Korteweg-de Vries equation, to appear. | Zbl
, , and ,[4] Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type, Ph. D. Thesis, University of Göteborg, 1980.
,[5] Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50-64. | MR | Zbl
,[6] The numerical analysis of ordinary differential equations ; Runge-Kutta methods and general linear methods, John Wiley, Chichester, 1987. | MR | Zbl
,[7] Sur la B-stabilité des méthodes de Runge-Kutta, Numer. Math. 32 (1979), 75-82. | MR | Zbl
,[8] On the discretization in time of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), 359-377. | MR | Zbl
and ,[9] Stability of Runge-Kutta methods for stiff nonlinear differential equations, North Holland, Amsterdam, 1984. | MR | Zbl
and ,[10] An alternating direction method for Schrödinger's equation, SIAM J. Numer. Anal. 14 (1977), 1028-1032. | MR | Zbl
,[11] On some high order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation, Math. Comp. 45 (1985), 329-345. | MR | Zbl
and ,[12] On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp. 55 (1990), 473-496. | MR | Zbl
and ,[13] Ocean acoustic propagation by finite difference methods, Comput. Math. Appl. 14 (1987) No. 5. | MR | Zbl
and ,[14] Computational acoustics : wave propagation, Proceedings of the 1st IMACS symposium on computational acoustics, New Haven, 6-8 August 1986, vols. 1, 2, North Holland, Amsterdam, 1988. | MR | Zbl
, and eds.,[15] Problèmes aux limites non homogènes et applications, vol. 2, Dunod, Paris, 1968. | MR | Zbl
and ,[16] Mixed approximations of evolution problems, Comput. Meths. Appl. Mech. Engrg. 24 (1980), 137-163. | MR | Zbl
,[17] Methods for the numerical solution of the nonlinear Schrödinger equation, Math. Comp. 43 (1984), 21-27. | MR | Zbl
,[18] Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Num. Anal. 6 (1986), 25-42. | MR | Zbl
and ,[19] Computational ocean acoustics, Invited lectures from the workshop held at Yale University, 1-3 August 1984, Comput. Math. Appl. 11 (1985) Nos 7-8. | MR
and eds.,[20] The parabolic approximation method », in Wave propagation and underwater acoustics, J. B. Keller and J. S. Papadakis eds., 224-287, Lecture Notes in Physics v. 70, Springer-Verlag, Berlin-Heidelberg, 1977. | MR
, «[21] Convergence estimates for semi-discrete Galerkin methods for initial-value problems », in Numerische, insbesondere approximations-theoretische Behandlung von Funktionalgleichungen, R. Ansorge and W. Törnig eds., 243-262, Lecture Notes in Mathematics v. 333, Springer-Verlag, Berlin-Heidelberg, 1973. | MR | Zbl
«[22] Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics v. 1054, Springer-Verlag, Berlin-Heidelberg, 1984. | MR | Zbl
,[23] A dissipative Galerkin method for the numerical solution of first order hyperbolic equations », in Mathematical aspects of fînite elements in partial differential equations, C. de Boor ed., 147-169, Academic Press, New York, 1974. | MR | Zbl
, «[24] On fully discrete Galerkin methods of second-order temporal accuracy for the Nonlinear Schrödinger Equation, to appear in Numer. Math. | MR | Zbl
, and ,[25] On optimal-order error estimates for the Nonlinear Schrödinger Equation, to appear. | MR | Zbl
, and ,