Existence and convergence of the expansion in the asymptotic theory of elastic thin plates
ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 3, pp. 371-391.
@article{M2AN_1991__25_3_371_0,
     author = {Paumier, J.-C.},
     title = {Existence and convergence of the expansion in the asymptotic theory of elastic thin plates},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {371--391},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {25},
     number = {3},
     year = {1991},
     mrnumber = {1103094},
     zbl = {0759.73034},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1991__25_3_371_0/}
}
TY  - JOUR
AU  - Paumier, J.-C.
TI  - Existence and convergence of the expansion in the asymptotic theory of elastic thin plates
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1991
SP  - 371
EP  - 391
VL  - 25
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1991__25_3_371_0/
LA  - en
ID  - M2AN_1991__25_3_371_0
ER  - 
%0 Journal Article
%A Paumier, J.-C.
%T Existence and convergence of the expansion in the asymptotic theory of elastic thin plates
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1991
%P 371-391
%V 25
%N 3
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1991__25_3_371_0/
%G en
%F M2AN_1991__25_3_371_0
Paumier, J.-C. Existence and convergence of the expansion in the asymptotic theory of elastic thin plates. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 3, pp. 371-391. http://www.numdam.org/item/M2AN_1991__25_3_371_0/

[1] F. Brezzi (1974) : On the existence uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O., R2, 129-151. | Numdam | MR | Zbl

[2] P. G. Ciarlet (1980) : A justification of the von Kármán equations. Arch. Rat. Mech. Anal. 73, 349-389. | MR | Zbl

[3] P. G. Ciarlet, P. Destuynder (1979) : A justification of the two-dimensional linear plate model. J. Mécanique 18, 315-344. | MR | Zbl

[4] P. G. Ciarlet, S. Kesavan (1980) : Two dimensional approximations of three dimensional eigenvalues in plate theory. Comp. Methods Appl. Mech. Eng. 26, 149-172. | MR | Zbl

[5] P. G. Ciarlet, J.-C. Paumier (1986) : A justification of the Marguerre - von Kármán equations. Comp. mech. 1, 177-202. | Zbl

[6] P. Destuynder (1980) Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Thesis, Université P. et M. Curie, Paris.

[7] P. Destuynder (1981) Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité. RAIRO An. Num. 15, 331-369. | Numdam | MR | Zbl

[8] J.-L. Lions (1973) Perturbation singulière dans les problèmes aux limites et en contrôle optimal. Lecture notes in maths 323, Berlin, Heidelberg, New-York : Springer. | MR | Zbl

[9] J. C. Paumier (1985) Analyse de certains problèmes non linéaires, modèles de plaques et de coques. Thesis, Université P. et M. Curie

[10] J. C. Paumier (1990) Existence Theorems for Non Linear Elastic Plates with Periodic Boundary Conditions, Journal of Elasticity, 23, 233-252. | MR | Zbl

[11] A. Raoult (1985) Constructiond'un modèle d'évolution de plaques, Annali di Matematica Pura et Applicata CXXXIX, 361-400. | MR | Zbl

[12] K. O. Friedrichs, R. F. Dressler (1961) A boundary-layer theory for elastic plates, Comm. Pure Appl. Maths. 14, 1-33. | MR | Zbl

[13] A. L. Goldenveizer Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Prikl. Mat. Mech. 26, 668-686 (English translation J. Appl. Math. Mech. (1964), 1000-1025). | MR | Zbl