@article{M2AN_1991__25_3_371_0, author = {Paumier, J.-C.}, title = {Existence and convergence of the expansion in the asymptotic theory of elastic thin plates}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {371--391}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {25}, number = {3}, year = {1991}, mrnumber = {1103094}, zbl = {0759.73034}, language = {en}, url = {http://www.numdam.org/item/M2AN_1991__25_3_371_0/} }
TY - JOUR AU - Paumier, J.-C. TI - Existence and convergence of the expansion in the asymptotic theory of elastic thin plates JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1991 SP - 371 EP - 391 VL - 25 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1991__25_3_371_0/ LA - en ID - M2AN_1991__25_3_371_0 ER -
%0 Journal Article %A Paumier, J.-C. %T Existence and convergence of the expansion in the asymptotic theory of elastic thin plates %J ESAIM: Modélisation mathématique et analyse numérique %D 1991 %P 371-391 %V 25 %N 3 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1991__25_3_371_0/ %G en %F M2AN_1991__25_3_371_0
Paumier, J.-C. Existence and convergence of the expansion in the asymptotic theory of elastic thin plates. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 3, pp. 371-391. http://www.numdam.org/item/M2AN_1991__25_3_371_0/
[1] On the existence uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O., R2, 129-151. | Numdam | MR | Zbl
(1974) :[2] A justification of the von Kármán equations. Arch. Rat. Mech. Anal. 73, 349-389. | MR | Zbl
(1980) :[3] A justification of the two-dimensional linear plate model. J. Mécanique 18, 315-344. | MR | Zbl
, (1979) :[4] Two dimensional approximations of three dimensional eigenvalues in plate theory. Comp. Methods Appl. Mech. Eng. 26, 149-172. | MR | Zbl
, (1980) :[5] A justification of the Marguerre - von Kármán equations. Comp. mech. 1, 177-202. | Zbl
, (1986) :[6] Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Thesis, Université P. et M. Curie, Paris.
(1980)[7] Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité. RAIRO An. Num. 15, 331-369. | Numdam | MR | Zbl
(1981)[8] Perturbation singulière dans les problèmes aux limites et en contrôle optimal. Lecture notes in maths 323, Berlin, Heidelberg, New-York : Springer. | MR | Zbl
(1973)[9] Analyse de certains problèmes non linéaires, modèles de plaques et de coques. Thesis, Université P. et M. Curie
(1985)[10] Existence Theorems for Non Linear Elastic Plates with Periodic Boundary Conditions, Journal of Elasticity, 23, 233-252. | MR | Zbl
(1990)[11] Constructiond'un modèle d'évolution de plaques, Annali di Matematica Pura et Applicata CXXXIX, 361-400. | MR | Zbl
(1985)[12] A boundary-layer theory for elastic plates, Comm. Pure Appl. Maths. 14, 1-33. | MR | Zbl
, (1961)[13] Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Prikl. Mat. Mech. 26, 668-686 (English translation J. Appl. Math. Mech. (1964), 1000-1025). | MR | Zbl