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J l U l J J MOOÉUSAT1ON MATHÉMATIQUE ET ANALYSÉ NUMÉRIQUE

(Vol. 25, n 1, 1991, p. 49 à 66)

APPROXIMATION BY FINITE ELEMENT METHOD
OF THE MODEL PLASMA PROBLEM (*)

Gabriel CALOZ Q)

Communicated by F. BREZZI

Abstract. — We analyze finite element approximations of the model plasma problem

— Aw = \{w — d)+ in H, w = 0 on 3H, X (w — d)+ dx = j , where ft is a bounded domain in
Ju

IR2 wit h boundary dCl and j is a given positive number ; the function w and the real X are the
unknowns, d is a parameter. We can show that the finite element approximation, in the case of
numerical intégration too, converges in the norms of Hl(il) and Lœ(Q) at the optimal rate.

Résumé. — Nous analysons une approximation par éléments finis du problème modèle des

plasmas - Aw = \(w — d)+ dans H, w = 0 sur 9ft, X (w - d)+ dx =j\ où fi est un domaine
Jn

borné de M2 de frontière 6O et j un réel positif ; la fonction w et le réel X sont les inconnues, d est
un paramètre. Nous pouvons montrer que l'approximation par éléments finis proposée, y
compris avec intégration numérique, a une convergence optimale dans les normes de

et L™(Çl).

1. INTRODUCTION

Let Çï be a regular bounded domain in R2 with boundary 6fî and j be a
real positive number. We define the mapping S : R2 x H\ü) -• U x H\
by

// f (v-e)+dx-j\
e,l,v)= Jn

\ v-lT(v-e)+ ƒ
(1.1) S(e,l,v)=\ Jn V (e, !, v) e R2 x Hl(ü) ,

(*) Received in January 1989.
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(l) Department of Mathematics, University of Maryland, College Park, Maryland, MD

20742, U.S.A.

M2AN Modélisation mathématique et Analyse numérique 0764-583X/91/01/49/17/$ 3.70
Mathematical Modelling and Numerical Analysis © AFCET Gauthier-Villars



50 G. CALOZ

where the compact linear operator TE jSP(Z,2(fl) ; Hl(fl)) is given by : for
a function ƒ e L2(£l), Tf = v e Hl(fl) is the solution of

(1.2) - Av = ƒ in O,, ü = 0 on 3(1.

For ease of exposition, we assume that

(1.3) (H) n is a convex domain .

Remark that our analysis can be carry out with some technical difficulties if
we assume that H is such that Te <£(L2(Q,) ; H2(Ü)). We will study fmite
element approximations of

P R O B L E M 1 . 1 : For the value d of the parameter, find \ e R and
w e Hl(ft) such that

S(d, X, w ) = 0 .

Remark that Problem 1.1 is called the model plasma problem and has
been studied first in [11] ; it can be related directly to the study of the static
magnetohydrodynamic (MHD) equilibria of a plasma confîned in a to-
kamak, see [11], [5], [2], for an account. Because the mapping
ƒ : ue H\ft)^f(u) = u+ e L2(fl) is not of class C1 (Df(u) does not
exist if the measure of the set {x e Cl : u (x) = 0} is different from zero), the
mapping S is not continuously Fréchet differentiable.

Let k{ < \ 2 =£= \ 3 ==:..., be the characteristic values of the operator
T. The characteristic value kx is positive, simple and the corresponding
eigenvector <j>! can be chosen positive such that

(1.4)
f
Ja

Using a variant of the implicit function theorem given in [10], Caloz proved
in [2] the following resuit.

THEOREM 1.2 : There exist a positive number d and two C 1 mappings

\:de [0, d] _ * X ( d ) e R and w:de [0, d] ^ w(d) G

such that

(1.5) m e a s {xeü:w(d)(x) = d} = 0 ,

(1.6) J

(1.7)
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APPROXIMATION OF THE MODEL PLASMA PROBLEM 51

Moreover \ ( . ) is increasing and the branch de [0, d] •-
w(d))eUxH\a) is regular, Le. Dlv S(d,\(d), w(d)) exists and is
regular for all d e [0, d].

The main goal of this paper is to analyze the gap between the solution
branch given in Theorem 1.2 and an approximation of this branch by a fînite
element method. We will focus our study on the approximation of Problem
1.1 with piecewise linear éléments, including numerical intégration, and
obtain rates of convergence.

The layout of the paper is as follows. In Section 2, we state all the
theoretical results concerning the approximation of Problem 1.1. In
Section 3, we present in an abstract framework a resuit on the approxima-
tion of the regular solutions of nonlinear problems stated in [4]. Finally
Section 4 is devoted to the proofs.

Let us mention that the error estimâtes at optimal rates were already
proved in [2] but without numerical intégration. Moreover here we follow
[4] where a simpler, alternate proof has been developed. In that way, we can
improve the results obtained by Kikuchi et al [8] and the ones by Barrett
and Elliott [1], when numerical intégration is introduced.

2. THEORETICAL RESULTS

Throughout the paper we adopt the following Standard notation. Let
X, Z be two Banach spaces with the norms || . \\x, || . || z ; when there is no
ambiguity we omit the subscript. £P(X\Z) dénotes the space of continuous
linear operators from X to Z. The norm in the product space R x l is
defined by || . | |R x J r = | . | + || . | | r. The W^p{ü.) are the Sobolev spaces
on H, with the norm || . | | m - n and the seminorm | . | m / 7 n * When
p is equal to 2, W1**^) is a Hubert space denoted by 77m(a) with the scalar
product ( . , . ) m y ü inducing the norm || . | | m > n s || . \\mr^a- We set
HQ(SÏ) = {v G Hl(ü) : v = 0 on 311}, a(.,. ) dénotes the Dirichlet form
on /fo(fï). C°(n) is the space of continuous functions on Ö.

Let {1^h}ö^h j be a regular family of triangulations of H, (see [3] for
instance), where h is the maximum of the diameters of the triangles
K in *&h. We set Ö,h - M K and suppose that the vertices on the boundary

of Ùh are also on the boundary 3H. With the hypothesis (1.3), we have

Qh a H, £lh being the interior of ÖA. We define the finite element space

(2.1) Vh= {vhe ]

vol. 25, n°l, 1991



52 G. CALOZ

where âPx dénotes the space of polynomials of degree L With this space
Vh, we associate the forms

a(u, v ) = '
Jn

(2.2) a(u, v ) = | VHVIKÈC,

(2.3)
n

(2.4) (ƒ>)* = X [ ̂  £ ƒ(*,*) »(«;*)] ,

where sK is the measure of Ke ^h and alK, i = 1,2, 3, its vertices. We
define now the operators Th : L

2(£l) -> FA9 fA : C°(â) ^ Vh by

(2.5) f o r / 6 Z , 2 ( a ) , a(T„f,v)= (f,v)„ VveVh,

(2.6) f o r / e C ° ( â ) , a{fh f, v) = (/, »)* Vu e F , ,

and the mappings S» :R 2 xF è -»RxK t , SA : R2 x FA -• IR x FA by

(2.7) SA(C,/,i>) =

(2.8) j /k(e,/,«) =

Finite element approximations of Problem 1.1 can be stated in the following
way.

PROBLEM 2.1 : For the value d of the parameter, find Xh e U and
wh e Vh such that

PROBLEM 2.2 : For the value d of the parameter, find \h 6 IR and
wh 6 V h such that

In Section 4, we will prove the following results.

PROPOSITION 2.3 : Let d, \( . ) andw( . ) be the positive real number and
the f unetions given in Theorem 1.2. There exist two positive constants a,
h0 and f or h =s h0 two continuous mappings

Kh:de [0, d] ^kh(d)eU and w h : de [0, d] ^> wh(d) e Vh

M2AN Modélisation mathématique et Analyse numérique
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APPROXIMATION OF THE MODEL PLASMA PROBLEM 53

such that for de [0, d], h^h0

(2.9) (Sh(d, K w ) = 0, (X, w) s B«lh(d), wh(d)), «)) o

o(k = \h(d), w = wh(d)) ,

where

(\h(d), wh{d)) = (\(d), \(d) Th(w(d) - dY )

and B((kh(d), wh(d)), a) is the closed bail in U x Hl((l) with radius a and

centre (\h{d), wh(d)). Moreover there exists a constant c such that

(2.10) \k(d)-kh(d)\ ^ch\

(2.11) \\w(d) - wA(</) | |0 j O + h\\w(d) - wh(d)\\xa ^ ch2;

for all e > 0 there exists a constant c ( e ) with

(2.12) ^ 2

and ifw(d) is in W2>

(2.13) \\w(d) ~ wA(d)||0>flO(n ^ ch2 |ln h | .

For h^h0 and J e [0, J ] , let us define the sets

(2.14) Ah = {JCG £1: (w(d)(x)> d and wh(d)(x)^d)

or (w(d)(x) ^ d and w^(t/)(jc) > d)}

(2.15) T, = {xGn

PROPOSITION 2.4 : Z,<?r d e [0, J] Z?e fixed. For all e > 0, ^er^ exists a

constant c(e) > 0 such that for all h =s h0

(2.16) meas

(2.17) meas (rA) = 0 ,

(2.18) d i s t ( r , r A ) ^ c(e)h2-\

where T is the set {x e II : w (d)(x) = d}.

We have similar results with the mapping Sh.

PROPOSITION 2.5 : Let dbe given in Theorem 1.2 and \ A ( . ), wA(. )

h^h0 in Proposition 2.3. There exist two positive constants à, /z0, and f or

vol. 25, n ° l , 1991



54 G CALOZ

h =£= h0 two continuons mappings

\h:de [0, d] -» \h(d) eU and wh:de [0, d] -> wh(d) e Vh

such that for de [0, d]9 h =£ h0

(2.19) (Sh(d, X, w ) = 0, (X, w) e B((K(d), wh(d)\ à) H Vh) o

where B((\h(d), wh(d)), à) is the closed bail in M x C°(H) with radius
à and centre (\h(d), wh(d)). Moreover there exists a constant c such that

(2.20) \\{d)-\h{d)\ + \\w(d)-wh(d)\\oa**ch2\\nh\ ,

(2.21) \\w(d)-wh(d)\\hn^ch;

for all E :> 0 there exists a constant c(e) with

(2.22) \ \ \ 2

and ifw(d) is in PF2

(2.23) \\w(d)-wh(d)\\0aoJi^ch2 \\nh\ .

The analogue of Proposition 2.4 with wh remains still valid.
Hère, we have limited our study to the approximation with piecewise

linear éléments. When we take piecewise degree 2 éléments, we can
improve the estimâtes (2.10)-(2.12), (2.16) and (2.18) as long as w(d) is in
H3(fl). If O is a polygonal domain, this is the case only if O is a rectangle or

a triangle with angles inferior to — (see [7]). If Cl is a regular domain (for

example of class C4), then w(d) is in WXp{Ci) for p G [1,OO ) (see [11]) : this
resuit is optimal as (w(d) - d)+ is at best in Wl'p(fl) if dis greater than 0.
Then taking isoparametric éléments of degree 2, we can improve the
estimâtes in the case without numerical intégration along the same lines.

3. APPROXIMATION OF REGULAR SOLUTIONS OF NONLINEAR PROBLEMS

We folio w the method developed in [4] and applied in [6]. The key point
in the proof of Proposition 2.3, is the use of a resuit on the approximation of
regular solutions of nonlinear problems. In this section, we give an overlook
of the method in a gênerai framework.
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APPROXIMATION OF THE MODEL PLASMA PROBLEM 55

We consider X, Z two Banach spaces and F a continuons map,
F : (/, x) e U x X^> F (/, x) e Z, We assume that the problem

(3.1) F ( / , x ) = O ,

has a reguiar solution branch {(/, x(/)):/ G L } with L c= IR compact. This
means that at every pair (/, x(/)) G L X X solution of (3.1), F is strongly
partially differentiable with respect to x (Le. for all 8 > 0 there are
ô > 0 and a neighborhood N of / such that \\xx - x(/) \\x < 8,

ô > e e N imv{y

2 ) F ( / (/))( ) \\ e ||xt - x 2 | | x ,\\F(e9 xO -F (e, x2) - 2)XF(/, x ( / ) ) ( ^ - x2) \\z

c/. [9]) and DxF(l, x(/)) is an isomorphism.
We introducé a positive parameter 0 < /z <: 1 which will tend to zero,

closed subspaces Xhcz X, Zh<^Z and a family of continuous maps,
Fh : IR x JSf/, -> ZA. We consider the problem to fïnd (/, xk) e IR x Xh such
that

(3.2) FA(/,x,) = 0.

With each reguiar point (/, x(/)) of the solution branch, we associate a
point xh(l) e Xh such that Fh(I, xh(I)) is small and the différence
x(/) - xh(i) can be easily studied. We assume that for / e L, 0 <h ^ h for

some h > 0,

(3.3) there exists B(I, h) e ££{Xh ; Zh) which is an isomorphism,

(3.4) there exists a function a e IR+ H-» Ll
h(a) e IR+ such that

\\Fh(l,w)-FhV,v)-B(l,h)(w-v)\\z^Ll
h(<*)\\w-v\\x

where the bail B1
H(OL) = lx e X: \\x — xh(l)\\ ^a\. Let us introducé the

following notations

(3.5)

(3.6)

PROPOSITION 3.1 : We suppose that the mapping xh : / G L ^ xh(l) e Xh

is continuons and

(3.7) sup f max 7^(/) 1 = 7 for some h > 0 ,

vol. 25, n° 1, 1991



56 G. CALOZ

(3.8) lim ( m a x 8 A ( / ) ) - 0 .

Moreover we assume (3.3), (3.4) and in addition for ail Ç =» 0, there are
otç, h^ with

(3.9) ^ ç
leL

Then there exist h0 > 0, a0 > 0 <z??<i a continuons map xh: l e L t-> xh(l) G JfA
swc/z //za£ for ail h ^ hOi l G L

(3.10) (FA(/, x) = 0, x e 2?£(a0) n Xh) o {x = xh(l)) .

Moreover we have the estimate

(3.11) ||x„(/) - x\x ^ 2 7 \\Fk(l9 x) \\z Vx G ̂ ( a 0 ) H Xh .

The proof of Proposition 3.1 can be obtained along the same lines as in [4]
with minor modifications.

4. PROOFS

Throughout this section, we shall refer to the notation introduced in the
previous one. Before starting with the proof of Proposition 2,35 let us make
some comment s. When we handle with the mapping Sh, we can simplify
somehow the theory in Section 3, because then it suffices to consider
Fh defïned on IR x X with values in Z. This will be no more the case with the
mapping Sh, As we need to differentiate the mappings S and Shi the
following result will be helpful.

LEMMA 4 . 1 : Let q>2 be an integer, Y be the space Lq(ü) or
C 0 (Ü), \\t be a function in Y and y be a real number. We set

and x the characteristic function of iïp. We assume the M2-measure of T is
zero.

Then for all £ > 0, there exist positive constants e0 and 80 such thaï for all e,
e* with | e - y \ ^ e0, \e* -y\ ^e0, for all u, u* e Y with \\ u - \\t \\ Y ^ 80,
|| M* — \\t || Y === 80, we have

M2AN Modélisation mathématique et Analyse numérique
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APPROXIMATION OF THE MODEL PLASMA PROBLEM 57

The proof of Lemma 4.1 is given in [2] when Y = Lq(£l) ; when
Y = C°(ft), it is an easy variant.

We consider the particular case X = RxHl(Q,)9 Z = RxH\Cl)9

l = d, x = (X, w ) and F = S. From Theorem 1.2, we know that Problem 1.1
has a regular solution branch Ud, X (d), w (d)) :de [0, d] \ . S is strongly

partially differentiable with respect to (/, v) and referring to Lemma 4.1, we
have

(4.1) D ltV S(d9\(d)9w(d))(b9u) = B(d)(b9u) =

M") Xd u dx 4- o (w(a) — a) + c
Jn Ja

u-\(d) Txdu-§T(w(d)-d)+

which is an isomorphism, (see [2] for details) ; hère x^ dénotes the
characteristic function of the set

(4.2) np(d) = {x e Ü : w(d)(x) > d} .

Proof of Proposition 2.3 : The relation (2.9) will be an immédiate
conséquence of Proposition 3.1 and the error estimâtes will be obtained
from (3.11) and the classical error estimâtes for approximation of linear
problems.

Let us consider with the parameter h, O < A < 1 , the spaces
Xh=Ux H\a)9 Zh = IR x HX(VL) and the mapping Fh = Sh defined in
(2.7). To each regular point (d, ^(d), w(d)) of the solution branch, we
associate the point (kh(d)9 wh(d)) = (\(rf), X(rf) Th(w(d) - d)+ ). For
d e [0, d] and h e (0, 1 ), we define B{d9 A ) e i f ( M x J7 l(H) ;
R x H\ü)) by B(d9 h ) = B(d) with B(d) given in (4.1).

Now to apply Proposition 3.1, we have to check (3.3), (3.4), (3.7), (3.8)
and (3.9). The hypothesis (3.3) is verified since we know from Theorem 1.2
that B(d) is an isomorphism, while (3.7) is an immédiate conséquence of the
fact that B(d,h) is independent of h. The continuity of the mapping S and
the fact, lim \\T — Tk\\ ̂ (Hi(CÏ) ffi(ü)) = 0, imply (3.8). Let us check now

h -^0

(3.4) and (3.9). Using Lemma 4.1 and the result,
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58 G. CALOZ

we easily check that for d e [0, d] and for ail real £ > 0, there are positive
numbers h, f and ô such that for ail h =s= h, for ail /, /* with | / - X (d) | ^ f,
| / * - \ ( r f ) | ssf and for ail M, w*eif1(O) with ||w - w (d)\\x a =s 8,

||M* — w (^)Hj a =£ ô, we have

(4.3) ||SA(d, /, u ) - SA(rf, /*, W* ) - 5(rf)(/ - /*, u - u*

A detailed proof of (4.3) is given in [2]. As

lim\\wh(d)-w(d)\\ia = 09
h->0

we can choose h^^h such that (4.3) is true for ail h^h^ and ail
( / ,M) , (/*,«*) in tfj?(ac) =

l : j / -

with aç = min j Ç, - j . With this and the continuity of wk9 we can easily

construct a function L^(a) satisfying (3.4) and (3.9). The équivalence (3.10)
implies (2.9). Hereafter c dénotes a generic constant independent of h and
d. In our case, Inequality (3.11) reads

(4.4) \\(d) -\h(d)\ + \\wh(d)-wh(d)\\lcl**c\\Sh(d9\(d)9wh(d))\\.

Remark that we can develop the right-hand side of (4.4) in the following
way

\\Sh(d,\(d), wh(d))\\ =k(d)\\ [(wh(d)-dy -(w(d)-d)+]dx

Using the fact that || Th || y,L2,a). Hua)) i
s bounded independently of h, we

obtain

(4.5)

M2AN Modélisation mathématique et Analyse numérique
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APPROXIMATION OF THE MODEL PLASMA PROBLEM 59

Introducing the classical error estimâtes for linear problems (cf. [3], [4] for
instance), (4.5) implies

(4.6) \\Sh(d,\(d),wh(d))\\ ^ch\

Finally the estimâtes (2.10)-(2.13) are a conséquence of (4.6) and the
classical error estimâtes for linear problems. D

We skip the proof of Proposition 2.4, which can be found in [2] or [1]. To
prove Proposition 2.5, it does not suffïce to adapt the proof of Prop-
osition 2.3, because the mapping Sh must be defined on continuous
functions, while Sh could be defined o n R x Hl(Ct), Moreover the choice of
the point (kh(d), wh(d)) cannot be (\(d), k(d) fh(w(d) - d)+ ) because
(w(d) - d)+ is in WUp(il)9 1 **p < oo, but not in W2/v(Vl), which is needed
to obtain optimal estimâtes.

We consider now the case X = R x C°(fi), Z = R x C°(fi). As the

operator Te &(L2(£l) ; C°(Ù)) is compact, the operator

B(d) e g (U x C °(ft) ; R x C °(â)) is an isomorphism and

Ud, X (d), w(d)) : de [0, d]\ is a regular solution branch of the problem

to find for the value d of the parameter, (\, w) e R x C°(Ö) such that

S(d9 Kw) = 0.
Proof of Proposition 2.5 : Hereafter c dénotes a generic constant

independent of h and d ; to specify a constant, we use c indexed by an
integer. Let us consider with the parameter h, 0 < h <: 1, the spaces
I ^ R x Vh9 Zh =M x Vhi remember that here Vh is provided with the
norm ||. ||0 ̂  a , and the mapping Fh = Sh defined in (2.8). To each regular
solution (d, X (d), w(d)) we associate the point

Ch(d),wh(d))= (kh(d),wh(d)),

where the functions X^(. ), wk( . ) are the ones given in Proposition 2.3. For
de [0, d] and h e (0,1), we define the operator
B(d, h ) G JS? (R x Vh ; IR x Vh) by

(4.7)

a J n I V ( ô , « ) e R x Vh;
Th Xhd u - hTh(wh(d) - dY

here \hd dénotes the characteristic function of the set

(4.8) ap(h, d) = {x e Cï : wh(d)(x) > d} .

vol. 25, n ° l , 1991



60 G. CALOZ

Remark that with Lemma 4.1 and the equality (2.17), we show that for h
small enough B{d, h) = Dl v Sh(d,\h(d),wh(d)). To apply Proposition
3.1, we shall check fîrst (3.3) and (3.7), secondly (3.8) and thirdly (3.4) and
(3.9).

1° Let us show that there exists h => 0 such that for de [0, d],
0 < h === h, B(d, h ) is an isomorphism and (3.7) is satisfled. Remark that we
can consider B(d, h) e j£?(R x C°(ft) ; R x C °(ft)) and write

(4.9)

with A (h, d) e ££ (R x C°(Ô) ;R x C°(â)) . Using the estimâtes (2.10),
(2.11), (2.12), (2.16) and the property lim || T- 7*||^(i.2(n).co(n)) = 0, we

h —>• 0

easily show that lim ||^4(rf,/i)|| =0 . Let us recall that

B(d) e &(Mx C°(ft) ; M x C °(S)) is an isomorphism. There is a A > 0

such that for ail 0 < /z ̂  ^, B(d, h) is an isomorphism on IR x C°(Ö) and
the norm of A(d, h) is bounded by 1/2 ; in particular, we have

(4.10) 1 1 1 1

where ||.|| dénotes the norm in i f (M x C°(Ö) ; U x C 0 (â)) . As a
conséquence, Assumptions (3.3) and (3.7) are verifîed.

2° We check now (3.8). By the définition (3.5) of eA, we have

(4.11) eh(d) = \\Sh{d,

+ \h(d)\\Th(wh(d) -dy - fh(Wh(d)-dy II
" il U, 00, SI

We analyze separately both terms of the right-hand side of (4.11). Let us
consider the partition of T^ = 751A U 7S2/i

 u ^3/i given by

- échanges signin^T },

Using the maximum principle, the fact that { x e ( l : w(d)(x) = d) is a
Jordan curve (these arguments are developed in [2], Lemmas 4.6 and 4.7)
and the estimate (2.12), we can show the existence of h and a constant c such
that for h ^ h,
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APPROXIMATION OF THE MODEL PLASMA PHOBLEM 61

(4.12) meas ( ^jK=Cl2h) ** ch , \\ wh{d) - d\\^ * ch .

With the partition of 7SA given above, we can develop

(4.13) | ((wh(d) - d ) \ \ ) h - ((wh(d) - d)+ , l)h\

+ I

iK)- \ (wh(d)-d)dx

^ J (Wh(d)-dY(aiK)+

when we use (4.12) and the fact that numerical intégration is exact for
polynomials of degree 1. To estimate the last term in (4.11), we introducé
some notations ; if we dénote by

*k = Th(wh(d) - d)+ , ûh = fh(wh(d)-dy,

then the functions uh, üh satisfy

(4.14) \ VuhVvhdx= «wh(d)-d)\vh)h,
Ja

(4.15) f VùhVvhdx=«wh(d)-d)+
9vh)j-, VvheVh.

Ja

Substracting (4.15) from (4.14), we obtain

(4.16) V(uh - üh) Vvh dx = E((wh(d) - d)+ , vh) ,
Ja

where we have used the notation

E((wh(d) - d)+
yvh) = ((wh(d) - d)+, vk)h - ((wh(d) - d)+, vh)h .

We plug vh = uh — ûh in (4.16) and obtain

(4.17) \uh - uh\\ü = E((wh(d) - d)\uh - ûh) .

If EK(.,. ) dénotes the same error as E(.,. ) but on the triangle K, then we
can write

(4.18) E((wh(d)-d)\uh-ûh)= £ EK{wh(d)-diUh-ûh)

+ E EK{(wh(d)-d)\uh-ûh).
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Since the intégration rule is exact for polynomiaîs of degree 1 and
— d, uh~ ûh are piecewise polynomials of degree 1, we have

( 4 . 1 9 ) £ EK(wh{d) -d,uh- ûh) ^ ch2\\wh(d) -d\\ 1 n | | w A - ù h \ \ l a

Applying the inverse inequality

(4-20) Klk.,n*clln*rKlli.n>

and (4.12) we can bound

(4.21) £ EK«wh(d) - d)\ uh - ûh) ̂  ch2\\nh \^\\uh - ûh\\x fl .

So from (4.21) and (4.19), a bound of (4.17) is obtained

(4.22) | | M A -« A | | 1 ) n a ecA 2 | l nA |^ .

Finally with (4.13), (4.20) and (4.22), we can overestimate (4.11) in the
following way

(4.23) eh(d)^ch2\\nh\ .

As a conséquence, the assumption (3.8) is verified.

3° Now we have to check (3.4) and (3.9). To this end, we shall show that
for d 6 [0, d] and for ail Ç > 0, there are h^ a^ with

( 4 . 2 4 ) \\Sk(d, / , M ) - Sh(d, l*,u*)-B(d9h)V-l*,u- u* ) | | R
c 0 ( f l )

for h ̂  As and (/, u ), (/*, M* ) e 5j?(ot£). Let i > 0 be fixed. In the same
way we have proved (4.3), we can show there are positive numbers
hu Ê! and b{ such that for ail h*zhu for ail /, /* with \l - \(d)\ ^ 4 b

Çi and for ail w, w* e C%Ü) with ||u - w (rf)||OiOO >n « Ôls

(4.25) \\Sh(d, Lu)- Sh(d,l*9 u* ) -B(d, h ) ( / - / * , « - u* ) | | R x C o ( f l ) «s

^ | { | / - / * | + | | « - « * IIo.co,n}-
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We analyze now

(4.26)

\\Sh(d, hu)- Sh(d, /* , u* ) - Sk(d, hu) + Sh(d, /* , W* ) | | R x C o ( f i ) =

= \E(I(u-d)+ -l*(u*-d)+
9 1 ) |

+ \(Tk - fh)(l(u - d)+ - / * ( w * — d)+ ) | | ,

where £"(.,. ) has been defined in (4.16). Before developing both terms of
the right-hand side of (4.26), let us recall a useful resuit. For e ;> 0, let us
define the set A(E) = {x s ft : \w(d){x) - d\ *ss} ; then there exists a
constant cx such that

(4.27) meas A (e) =s cx e .

This is a conséquence of the maximum principle and the fact that
{x G ft : w(d)(x) = d} is a Jordan curve, (cf. [2] for details). We consider
now e0 ̂  0, which will be expressed later, and associate a partition of

1*2 h= {K

Let us choose now h2^ hx such that for h ̂  h2

(4.28)

We choose S2 = min lbu— ) and consider /, /* with \l — \(d)\

\I*-\(d)\*tuu,u*eVhvnÛi

then

(4.29) \E(l(u-d)+ - / * ( « * - d)+,

^ | / - Z* | 2 C l eollii - d\\Q^a + | / * |2 C l eo | |« - w* ||0)OO,n
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On the other hand, the last term in (4.26) is developed in the followmg way

(4.30) \\(T„ - 7 i ) ( / ( « - dy - / * ( « * - d y ) | '

^ \l-l*\\\(Th-fh)(u-d)+

Il0,oo, Ù

io,oo, n

Let us study the two terms of (4.30) ; hereafter ƒ represents either
(u — d)+ or (u — d)+ - (u* - d)+. We introducé the Galerkin approxi-
mation Gh(.,. ) in Vh to the Green function G ( . , . ) ; we have for

a

The following Standard results will be useful,

(4.31) | | G * ( * , . ) | | O i n ^ , \\Gh(x,.)\\ha^c\lnh\l!\ for

Then with this function Gh, we have

=max\E(f,Gh(x,.))\.

For vh e Vh we develop likewise in (4.18)

I EK(f,vh)\+\

which implies if vh is Gh(x, .)

(4.32) ||(r» - fh) f ||0oo>n aSC2{A2 | lnA|1'2
 + 2(c, B 0) ' / 2} | | / | | 0 o o > n .

We can express now e0 precisely ; it has to be chosen according to (4.29),
(4.30) and (4.32) such that

\\w(d)-d\\0^a + bl}^i,
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c2{e2
0\ln e o | 1 / 2 + 2( C l eo)1'2} {\(d) + £,} « | .

Then for all /i =s A2, for all /, /* with | / - X (rf) | =e Çb | / * - X (d) | *= £i and
for all u, u* E Vh with ||« - w ( J ) | | 0 o o n « ô2, | |«* - w(rf) | |0 i 0 0 i O * 82 we
have

(4.33) | |£ (d, l9u) — S^Cd, /*, «* ) — Sh(d, /, w ) +

~^~ h\ 9 •> )Il(j5 x c°(ô) ~~~ 2 *- ~~ I il IIo,oo,n ƒ *

The inequality (4.24) is an immédiate conséquence of (4.25), (4.33), (2.10)
and (2.12).

We can apply Proposition 3.1. The error estimâtes are an easy application
of the inequality (3.11) with (4.23) and of the ones in Proposition 2.3. D
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