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APPROXIMATION BY FINITE ELEMENT METHOD
OF THE MODEL PLASMA PROBLEM (*)

Gabriel CaLoz (1)

Communicated by F. BREzz1

Abstract. — We analyze finite element approximations of the model plasma problem

—Aw=A(w—-d)* inQ,w=0o0n3Q, A J- (w —d)* dx = j, where Q is a bounded domain in
a
R? with boundary dQ and j is a given positive number ; the function w and the real \ are the
unknowns, d is a parameter. We can show that the finite element approximation, in the case of
numerical integration too, converges in the norms of H'(Q) and L®(Q) at the optimal rate.

Résumé. — Nous analysons une approximation par éléments finis du probléme modéle des

plasmas — Aw = N (w — d)* dans Q, w = 0 sur 3Q, \ J. (w—d)* dx =j, ou Q est un domaine
0

borné de R? de frontiére 3Q) et j un réel positif ; la fonction w et le réel \ sont les inconnues, d est

un paramétre. Nous pouvons montrer que l’approximation par éléments finis proposée, y

compris avec intégration numérique, a une convergence optimale dans les normes de

HY(Q) et L®(Q).

1. INTRODUCTION

Let Q be a regular bounded domain in R? with boundary 3Q and j be a
real positive number. We define the mapping S:R* x H'(Q) - R x H'(Q)
by

l'[ (v —e)* dx—j
(¢}

v—IT(v—e)*

1.1) S(e,l,v) = Ve l,v)eR*x H'(Q),

(*) Received in January 1989.
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50 G. CALOZ

where the compact linear operator T € £ (L*(Q) ; H'(Q)) is given by : for
a function f € L*(Q), Tf =v e H'(Q) is the solution of

(1.2) —Av=finQ, v=00n3Q.
For ease of exposition, we assume that
(1.3) (H) Q is a convex domain .

Remark that our analysis can be carry out with some technical difficulties if
we assume that Q is such that Te £ (L*(Q); H(Q)). We will study finite
element approximations of

PROBLEM 1.1: For the value d of the parameter, find \ € R and
we HY(Q) such that

Sd N, w)=0.

Remark that Problem 1.1 is called the model plasma problem and has
been studied first in [11] ; it can be related directly to the study of the static
magnetohydrodynamic (MHD) equilibria of a plasma confined in a to-
kamak, see [11], [5], [2], for an account. Because the mapping
fiue H(Q) - f(u)=u* € L%(Q) is not of class C' (Df (u) does not
exist if the measure of the set {x € Q:u(x) = 0} is different from zero), the
mapping S is not continuously Fréchet differentiable.

Let Ay <N, =<MN3=.., be the characteristic values of the operator
T. The characteristic value \; is positive, simple and the corresponding
eigenvector &, can be chosen positive such that

(1.4) by =N\ Td,, )\IJ bydx =j.
Q

Using a variant of the implicit function theorem given in [10], Caloz proved
in [2] the following result.

THEOREM 1.2 : There exist a positive number d and two C' mappings

N:de [0,d)—>A(d)eR and w:de [0,d] —w(d)e H(Q)

such that

(1.5) meas {x € Q:w(d)(x) =d} =0,
(1.6) S(d,\(d),w(d)) =0, Vde [0,d],
1.7 AO) =X, w(0)=d;; Nd)=\,.
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APPROXIMATION OF THE MODEL PLASMA PROBLEM 51

Moreover \(.) is increasing and the branch de [0, d] — (A (d),
w(d)) e R x H\(Q) is regular, i.e. D;, S(d,\(d), w(d)) exists and is
regular for all d e [0, d].

The main goal of this paper is to analyze the gap between the solution
branch given in Theorem 1.2 and an approximation of this branch by a finite
element method. We will focus our study on the approximation of Problem
1.1 with piecewise linear elements, including numerical integration, and
obtain rates of convergence.

The layout of the paper is as follows. In Section 2, we state all the
theoretical results concerning the approximation of Problem 1.1. In
Section 3, we present in an abstract framework a result on the approxima-
tion of the regular solutions of nonlinear problems stated in [4]. Finally
Section 4 is devoted to the proofs.

Let us mention that the error estimates at optimal rates were already
proved in [2] but without numerical integration. Moreover here we follow
[4] where a simpler, alternate proof has been developed. In that way, we can
improve the results obtained by Kikuchi et al. [8] and the ones by Barrett
and Elliott [1], when numerical integration is introduced.

2. THEORETICAL RESULTS

Throughout the paper we adopt the following standard notation. Let
X, Z be two Banach spaces with the norms || . ||, || - || ;; when there is no

ambiguity we omit the subscript. £ (X ; Z) denotes the space of continuous
linear operators from X to Z. The norm in the product space R x X is
defined by || . [g.x=1- |+ |l - |- The W™?(Q) are the Sobolev spaces
on ), with the norm |. ||, o and the seminorm |. | .. When
pisequal to 2, W™P?(Q) is a Hilbert space denoted by H™(£}) with the scalar
product (.,. ), o inducing the norm | .|| =1.1,,q We set
HY(Q) = {ve H'(Q):v =00ndQ}, a(.,. ) denotes the Dirichlet form
on H{(Q). C°%Q) is the space of continuous functions on Q.

Let {G,},_,_, be a regular family of triangulations of €, (see [3] for
instance), where k4 is the maximum of the diameters of the triangles

Kin B, Weset O, = U K and suppose that the vertices on the boundary

Ke Gy
of Q, are also on the boundary aQ. With the hypothesis (1.3), we have
Q, = Q, Q, being the interior of ,. We define the finite element space

@1 Vi={0,€C%D):0,(x) =0if x ¢ Q) v4]x€ P VKET,},
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where 2, denotes the space of polynomials of degree 1. With this space
V,, we associate the forms

2.2) a(u,v) = J Vu Vv dx ,
0
2.3) 00 = f fodx,
0
3] - SK 3
@.4) o= 5 [?:zlﬂa,x)v(a,-x)] ,

where sy is the measure of K€ G, and q,, i =1, 2, 3, its vertices. We
define now the operators 7, : LY Q) » V,, T,: C%0) — V, by

(2.5)
(2.6)

for f e L¥(Q),
for f e C%Q),

a(Thfsv) = (f’v)lz
a(Ty f,v) = (f, v)i

Vv e Vh’
YveV,,

and the mappings S,:R*x V, >R x V,, $,:R*x ¥V, >R x ¥V, by

.7 S,(e,l,v) = (

2.8) S,(e,l,v) = (

Finite element approximations of Problem

way.

I((v—e),1)—Jj

U—lTh(v—€)+

[((v—e), 1), —j>

. _ , Ve, Lv)eR?>xV,.
U—lTh(v—e)*

1.1 can be stated in the following

PROBLEM 2.1: For the value d of the parameter, find N\, € R and

wy, € V', such that

Sp(d, N, wy) =0.

PROBLEM 2.2: For the value d of the parameter, find N\, € R and

wy, € V', such that

Si(d, N j,wy) =0

In Section 4, we will prove the following results.

PROPOSITION 2.3 : Let d, N(. ) and w( . ) be the positive real number and
the functions given in Theorem 1.2. There exist two positive constants a,
hy and for h < hy two continuous mappings

Nide [0,d] >N\ (d)eR and w,:de [0,d] —w,(d) eV,
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such that for de [0, d], h<h,

29) (Si(d\w) =0, (\, w)e B((M(d), w,(d)), @) <
<> N=N(d),w =wy(d)),
where

(M(d), Wi(d)) = (M(d), N(@) Ty(w(d) — d)*)

and B((Xh(d), W, (d)), a) is the closed ball in R x H(Q) with radius o and

centre (\,(d), w,(d)). Moreover there exists a constant ¢ such that

(2.10) IN(d) = Ny (d) | < ch?,

(2.11) [w(d) = wi(@Dlg o +A[w(d) —wi(d)|, o =<ch?;
for all € >0 there exists a constant c(e) with

(2.12) Iw(d) —wi( Dy o o <cle)?77,

and if w(d) is in W»®(Q)

(2.13) [w(d) = wi(Dllg o o <ch?|lnh| .

For h<hgy and de [0, d], let us define the sets

214) A, = {xeQ: (w(d)(x)=>d and w,(d)(x)=<d)
or (w(d)(x) =d and w,(d)(x) =d)},
215 T, = {xeQ:w,(d)(x)=d} .

PROPOSITION 2.4 : Let de [0, d] be fixed. For all € =0, there exists a
constant c(e) =0 such that for all h<h,

(2.16) meas (A,) < c(e) h?2~°,
2.17) meas (I')) = 0,
(2.18) dist (T, T},) < c(e) h*~*,

where T is the set {x € Q:w(d)(x) =d}.
We have similar results with the mapping S,.

PROPOSITION 2.5 : Let d be given in Theorem 1.2 and \,(. ), w,,(. ) with

h < hq in Proposition 2.3. There exist two positive constants &, }20, and for
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54 G CALOZ

h < hy two continuous mappings
Apide [0,d] - M\(d)eR and w,:de [0,d]— w,(d) eV,
such that for de [0, d], h < h

(2.19) (S’,,(d, Aw) =0, (A, w)e B((\,(d), wy(d)), &) NV},) =
< (A= M(d), w = W, (d)),

where B((\,(d), w,(d)), &) is the closed ball in R x C°(Q) with radius
& and centre (N, (d), wy(d)). Moreover there exists a constant ¢ such that

(2.20) IN@) = M(@)| + [|w(d) — Wh(d)uo,ﬂschz |Ink|,

(2.21) | w(d) — w,(d) u1,a <ch;
for all € =0 there exists a constant c(e) with

(2.22) [ (d) = wi(d) <c(e)h?~®,

”0,00,0
and if w(d) is in W>*(Q)

(2.23) lw(d) —wn( )|, , o <ch®|Inh].

The analogue of Proposition 2.4 with w, remains still valid.

Here, we have limited our study to the approximation with piecewise
linear elements. When we take piecewise degree 2 elements, we can
improve the estimates (2.10)-(2.12), (2.16) and (2.18) as long as w(d) is in
H3(Q). If Q is a polygonal domain, this is the case only if € is a rectangle or

a triangle with angles inferior to % (see [7]). If Q is a regular domain (for

example of class C*%), then w(d) is in W>#(Q) for p € [1,00) (see [11]) : this
result is optimal as (w(d) — d)* is at best in Wh?(Q) if d is greater than 0.
Then taking isoparametric elements of degree 2, we can improve the
estimates in the case without numerical integration along the same lines.

3. APPROXIMATION OF REGULAR SOLUTIONS OF NONLINEAR PROBLEMS

We follow the method developed in [4] and applied in [6]. The key point
in the proof of Proposition 2.3, is the use of a result on the approximation of
regular solutions of nonlinear problems. In this section, we give an overlook
of the method in a general framework.

M?2AN Modélisation mathématique et Analyse numérique
Mathematical Modeling and Numerical Analysis



APPROXIMATION OF THE MODEL PLASMA PROBLEM 55

We consider X, Z two Banach spaces and F a continuous map,
F:(,x)eR x X~ F (I, x) € Z. We assume that the problem

€R)) F(l,x) =0,

has a regular solution branch {(/, x(/)):/ € L} with L <R compact. This
means that at every pair (/, x(/)) € L x X solution of (3.1), F is strongly
partially differentiable with respect to x (i.e. for all € =0 there are
8>0 and a neighborhood N of [/ such that |x —x(/)|, <3,

% - x(I)||, <8 e€ N imply
"F(eaxl)_F(e’x2)_DxF(lsx(l))(xl_xl)nzsenxl_XZNXa

¢f. 9) and D, F({l, x(1)) is an isomorphism.

We introduce a positive parameter 0 </ <1 which will tend to zero,
closed subspaces X, c X, Z,cZ and a family of continuous maps,
F,:R x X, - Z,. We consider the problem to find (/, x,) € R x X, such
that

(3.2) Fo(l,x,)=0.

With each regular point (/, x(/)) of the solution branch, we associate a
point X,(/) € X, such that F,(I, X,(/)) is small and the difference

x(1) — %,(1) can be easily studied. We assume that for / € L, 0 < h < A for

some i = 0,
(3.3) there exists B(l,h) e ¥ (X, ; Z,) which is an isomorphism,
(3.4) there exists a function a« € R* > L}(a) € R* such that

|Fu(l,w) — Fu(l,0) = B(L,h)(w—v)| < Li(a)|w—v
Vo,we Bl(a) N X,,

Il x

where the ball Bj(a) = {(xex:|x-%W)|, = a}. Let us introduce the

following notations
(3.5) en(l) = | Full, %),
6.6 ORISR P

PROPOSITION 3.1 : We suppose that the mapping %,:1 € L — %,(I) e X,
is continuous and

3.7 sup (max'yh(l))='y for some h =0,
O<h<h ‘1€l

vol. 25, n° 1, 1991



56 G. CALOZ

(3.8) lim (maxeh(l)) -0.
h->0 lelL

Moreover we assume (3.3), (3.4) and in addition for all { =0, there are
oy, hy with

(3.9) xlnach,’,(a)sg Vh<h;, a<a,.
€

Then there exist hy = 0, oy = 0 and a continuous map x,: 1 € L > x,(l) € X,
such that for all h<hy, [ € L

(3.10) (Fu(l, x) = 0, x € B}(a) N X)) < (x = x,(1)) -
Moreover we have the estimate

3.1 %) — x|, <2V[[Fa(l, ¥)||, Vx€Bj(ag) NX,.

The proof of Proposition 3.1 can be obtained along the same lines as in [4]
with minor modifications.

4. PROOFS

Throughout this section, we shall refer to the notation introduced in the
previous one. Before starting with the proof of Proposition 2.3, let us make
some comments. When we handle with the mapping S,, we can simplify
somehow the theory in Section 3, because then it suffices to consider
F), defined on R x X with values in Z. This will be no more the case with the
mapping S’h. As we need to differentiate the mappings S and S, the
following result will be helpful.

LEMMA 4.1: Let q=>2 be an integer, Y be the space LY(Q) or
C%Q), ¥ be a function in Y and v be a real number. We set

Q,={xeQ:y(x)>7}, I'= {xeQ:y(x) =7}

and x the characteristic function of Q,. We assume the R2-measure of T is
zero.

Then for all { = 0, there exist positive constants ey and 8 such that for all e,
e* with |e —vy| ey |e* —vy| =<ey, for all u, u* e Y with ||u — Ul y=3,
|u* — ¥ ||y < 8y, we have
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APPROXIMATION OF THE MODEL PLASMA PROBLEM 57

(w—e) — (u*—e*)" + (e—e*)x—x(u—u*)”o’ﬂs
sl(le—e*| + [lu—u*|,).

The proof of Lemma4.l is given in [2] when Y = L9(Q); when
Y = C%Q), it is an easy variant.

We consider the particular case X =R x H(Q), Z =R x H'(Q),
I =d x=(\w)and F = S. From Theorem 1.2, we know that Problem 1.1
has a regular solution branch {(d, A (d),w(d)):de [0, d] } S is strongly
partially differentiable with respect to (/, v) and referring to Lemma 4.1, we
have

@.1) D, S(d\(d),w(d)(5,u)=Bd)5,u) =

)\(d)f Xgudx + 8 J (w(d) —d)* dx
= o o , VB, u)eR x H(Q)
u—N(d) Txyu—-3T(w(d)—-d)*

which is an isomorphism, (see [2] for details); here x,; denotes the
characteristic function of the set

(4.2) Q,(d) = {xe Q:w(d)(x) >d} .

Proof of Proposition 2.3: The relation (2.9) will be an immediate
consequence of Proposition 3.1 and the error estimates will be obtained
from (3.11) and the classical error estimates for approximation of linear
problems.

Let us consider with the parameter A, O<h <1, the spaces
X, =RxH'(Q), Z, =R x H'(Q) and the mapping F, = S, defined in
(2.7). To each regular point (d, A (d), w(d)) of the solution branch, we
associate the point (Xh(d), Wwi(d)) = A(d),\(d) T,,(w(d) —d)*). For
de (0,d] and he (0,1), we define B(dh)e (RxH'(Q);
R x H'(Q)) by B(d, h) = B(d) with B(d) given in (4.1).

Now to apply Proposition 3.1, we have to check (3.3), (3.4), (3.7), (3.8)
and (3.9). The hypothesis (3.3) is verified since we know from Theorem 1.2
that B(d) is an isomorphism, while (3.7) is an immediate consequence of the
fact that B(d, h) is independent of 4. The continuity of the mapping S and
the fact, ziﬁ“T— T, ey, 1y = O imply (3.8). Let us check now
(3.4) and (3.9). Using Lemma 4.1 and the result,

im || T~ T,

” 2 N7d :01
B0 L(LAQ); H()
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we easily check that for d € [0, d] and for all real { > 0, there are positive

numbers 7, £ and 3 such that for all & < &, for all £, /* with [l =\ (d)| <&,
[I* —\(d)| <E and for all u, u*e H'(Q) with Ju—w ()], 4 <5,

|u* —w (D, q <3, we have
4.3) |ISu(dlLu)—S,(d1*u*)-B(d)(I-1*u—u*)| =<
s{{|I-1*| + JJlu—u* ||1’ﬂ}.

A detailed proof of (4.3) is given in [2]. As

lim || #,(d) —w(d)|, , =0,
hﬂo ’

we can choose h;sﬁ such that (4.3) is true for all A<h, and all
(,u), ((*,u*)in B,‘f(ag) =

= {tw eRxH'Q): || - M@ + [u- W@, ;=i

with o, = min (E, % ) With this and the continuity of w,, we can easily

construct a function L{(a) satisfying (3.4) and (3.9). The equivalence (3.10)

implies (2.9). Hereafter ¢ denotes a generic constant independent of 4 and
d. In our case, Inequality (3.11) reads

44 IMD =MD + [ Wi(@) = wi( D, , =] Si(d N (d), Fi(d)) ]

Remark that we can develop the right-hand side of (4.4) in the following
way

| Sk (d X (@), Wy (d)) || = K(d)U [(F(d) —d)" — (w(d) —d)" ] dx
Q

+ M) | Tl (@) = &) = (Fp(d) =¥, -

Using the fact that || 7},
obtain

I LLAO); H'@)) is bounded independently of A, we

4.5) || Si(d N (@), B (@) <c¢| (@) —d) — (w(d) -d)" ||,
<c|w(d) —w@d], ,-
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Introducing the classical error estimates for linear problems (cf. [3], [4] for
instance), (4.5) implies

(4.6) |5:(d, X (@), W, (d)) || < ch®.

Finally the estimates (2.10)-(2.13) are a consequence of (4.6) and the
classical error estimates for linear problems. [

We skip the proof of Proposition 2.4, which can be found in [2] or [1]. To
prove Proposition 2.5, it does not suffice to adapt the proof of Prop-

osition 2.3, because the mapping S, must be defined on continuous
functions, while S, could be defined on R x H'(Q). Moreover the choice of
the point (Xh(d), w,(d)) cannot be (A(d), A (d) Th(w (d) —d)*) because

(w(d) — d)* isin W'2(Q), 1 <p < oo, but not in W?'(Q), which is needed
to obtain optimal estimates.
We consider now the case X =R x C%8), Z=R x C%Q). As the

operator Te LLHQ);C%Q)) s compact, the operator
B(d)e ZRxC'(Q);RxC%Q)) is an  isomorphism  and
{(d, AN(d),w(d)):de [0, J]} is a regular solution branch of the problem

to find for the value d of the parameter, (A, w) € R x C °%(Q}) such that
S(d,\,w) =0.

Proof of Proposition 2.5: Hereafter ¢ denotes a generic constant
independent of /4 and d; to specify a constant, we use ¢ indexed by an
integer. Let us consider with the parameter h, 0 <h <1, the spaces
X, =R xV,, Z,=R x V,, remember that here V, is provided with the

norm ||. |, . ¢, and the mapping F), = S, defined in (2.8). To each regular
solution (d, A (d), w(d)) we associate the point

(M(d), wi(d)) = (\(d), wi(d))

where the functions A\, (. ), w,(. ) are the ones given in Proposition 2.3. For
de [0, d] and he (0,1), we define the operator
Bdh)e FRxV,;RxV,) by

47) B h) (5, u)=
A (d) J Xpa U dx + 3 J (wy(d) —d)* dx
Q o

VGB,u)eRxV,;
u—Ny(d) Ty xpg . — 8Ty (wy(d) — d)*

here x;, denotes the characteristic function of the set
(4.8) Q,(h,d) = {xe Q:w,(d)(x) =d} .

vol. 25, n"1, 1991
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Remark that with Lemma 4.1 and the equality (2.17), we show that for A
small enough B(d,2) = D, , S,(d, \,(d), w,(d)). To apply Proposition
3.1, we shall check first (3.3) and (3.7), secondly (3.8) and thirdly (3.4) and
(3.9).

1° Let us show that there exists # =0 such that for de [0, d],

0 < h < h, B(d, h) is an isomorphism and (3.7) is satisfied. Remark that we
can consider B(d,h)e LR x C°(Q) ;R x C°)) and write

(4.9) B(d,h) = B(d)(I + A (h,d))

with A(h,d)e LR x C°%Q);R x C°%Q)). Using the estimates (2.10),

(2.11), (2.12), (2.16) and the property lim | T — T}, =0, we
B0

[ L@LYQ); /D))

easily ~show that lim ||4(d, k)| =0. Let wus recall that
h=0

B(d)e R xC% D) ;R x C°%QN)) is an isomorphism. There is a & =0
such that for all 0 < 4 < /4, B(d, k) is an isomorphism on R x C° ) and
the norm of 4(d, #) is bounded by 1/2; in particular, we have

“.10) B h) | < T+ A ) IB@ | <2|B@) "],

where |.|| denotes the norm in Z(R x C%Q);R x C%Q)). As a
consequence, Assumptions (3.3) and (3.7) are verified.
2° We check now (3.8). By the definition (3.5) of ¢,, we have

@.11)  e,(d)

I

| Su(d X, wi@) g coay
M(@) | ((wi(d) = ), 1)y — ((wi(d) — d)*, 1),]
+ M @) || Ty (@) — @) = Ty(wy(d) — d)* ||

It

0,00,0°
We analyze separately both terms of the right-hand side of (4.11). Let us
consider the partition of G, = G, U B,, U B3, given by
Gip={KeTB,:wy(d)—d=0inK},
By = {K€ G,:w,(d) —dchangessignin K },
Gy, = {KeB,:wy(d)-d<0inK}.

Using the maximum principle, the fact that {x e Q:w(d)(x) =d} is a
Jordan curve (these arguments are developed in [2], Lemmas 4.6 and 4.7)
and the estimate (2.12), we can show the existence of /# and a constant ¢ such

that for & < h,
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(4.12) meas ( \J KEQZ,I) <ch, ||Wh(d)—d”0’°c,9“$0h-

KeGyp

With the partition of B, given above, we can develop

(4.13) | ((wp(d) —d)*, 1); = ((wy(d) —d)*, 1),]

<y ¥§:wum—dx¢m—j (wi(d) — d) dx
K

Ke By i=1
Ky 3
> ?K Y, (wy(d) —d)* (am)+j (wp(d) — d)* dx| < ch?,
KeBap i=1 I

when we use (4.12) and the fact that numerical integration is exact for
polynomials of degree 1. To estimate the last term in (4.11), we introduce
some notations ; if we denote by

wy = Ty(wy(d) —d) , @, = T(wy(d) — d)*+,

then the functions u,, @, satisfy
4.14) J Vu, Vo, dx = ((w,(d) —d)*,v,),,
Q
(4.15) j Vi, Vo, dx = (w,(d) —d)*,v,),, Yvo,eV,.
Q
Substracting (4.15) from (4.14), we obtain
(4.16) J V(u, — 2,) Vv, dx = E((w,(d) —d)",v,),
Q

where we have used the notation

E((wy(d) —d)*,v,) = ((wi(d) —d)*,v,), — ((wi(d) —d)7, 0,), .
We plug v, = u;, — 4, in (4.16) and obtain
4.17) |uh—ah|in=E((wh(d)—d)+,uh—12h).

If Ex(.,.) denotes the same error as E(.,.) but on the triangle K, then we
can write

(4.18) E((wi(d) —d) ,up—u,) = Yy Ex(w,(d)—d u;,— i)

Ke By

+ Y Ex((wy(d) —d)",uj,— ;).

Ke By
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Since the integration rule is exact for polynomials of degree 1 and
wy(d) — d, u, — 1, are piecewise polynomials of degree 1, we have

4.19) Y Ex(wip(d) —d,uy — ) < ch?||wy(d) — d|| Lo llen —

”1,9 :
Ke By

Applying the inverse inequality
(4-20) ” Uy ” 0,00, 0 =c | Inh |1/2” Uy " Lo’

and (4.12) we can bound

@21) Y Ex((wy(d) —d)*,uy— i) < ch?|ln b |"2uy, — ], -

Ke By

So from (4.21) and (4.19), a bound of (4.17) is obtained
(4.22) lun— an, o= ch?|In k|2,

Finally with (4.13), (4.20) and (4.22), we can overestimate (4.11) in the
following way

4.23) ey(d) < ch?|lnh | -
As a consequence, the assumption (3.8) is verified.

3° Now we have to check (3.4) and (3.9). To this end, we shall show that
for de [0, d] and for all { >0, there are h,, o, with
Q Q ® % *
424) | Si(d Lu)— S (d1*u*) = B(d, h)( —I*u—u )”Rxco(ﬂ)s
sC{[/ -1*|+ lu=u*gp a}>

for h=<h; and (I,u), (I*,u*) € Bj(a). Let { >0 be fixed. In the same
way we have proved (4.3), we can show there are positive numbers
hy, & and 3, such that for all 2 <h,, for all /, [* with |/ - N(d)| =&,
[[* —N(d)| <& and for all u, u* € C%Q) with ||u—w(d)| 3.,
u* —w(d)||}q q =B we have

0,00, 0 =

425 ||S,(d L, u)—S,(d 1*u*)—-B(d h)I -1*u—u* )”RxC"(ﬂ)s

< S  Ju—u g0}
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We analyze now
(4.26)

18:(d 1, u) = $,(d, 1*, u* ) — S,(d, L, u) + S (d, I*, u* )“Rxc"(ﬁ) =

= |E(Q(u—-d)" —I1*(w*-d)",1)|
+ [T = Ty U@ = d)t 1% @ =), .
where E(.,.) has been defined in (4.16). Before developing both terms of
the right-hand side of (4.26), let us recall a useful result. For ¢ =0, let us

define the set 4(e) = {xe€ Q: |w(d)(x) —d| <e} ; then there exists a
constant ¢; such that

@.27) meas A(e) <c €.

This is a consequence of the maximum principle and the fact that
{xe Q:w(d)(x) =d} is a Jordan curve, (¢f. [2] for details). We consider
now gy >0, which will be expressed later, and associate a partition of
G, = G, U Gy, U Ty, given by

€
By = {Ke "G,,:w(d)—d;ioinK],

€
By = {Ke Chiw(d) —d<— ;inK},
Byp={K€T,: K¢ Ty,U Ty}
Let us choose now 4, < h; such that for A< h,

(4.28) \J K 4(z) .

Ke By

€
We choose 8, = min (81, -2-9 ) and consider /, * with |/ —\(d)| &,

[[¥ —=N(d)| <&, u,u*eV , with
][u—w(d)"o,w’nsSz, ||u*——w(d)||o’w,0582,
then
(4.29) |E(I(u—d) —1*(u*—-d)*,1)| =<
s -I*||E(Qu—d)",1)| + |I*||E((u—d)* — (u*—d)*, 1)
= [I-1%|2ciegllu—dflgp o+ 17|12 creollu —u |gqp q -
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On the other hand, the last term in (4.26) is developed in the following way
4.30) ||(T) - T U(u—d)* —1*(u* - Ay, .=
,00, )
- _ _ T _ +
<=1 - TY@-aD) ||,
+ (T = T (@ = d) = @ =)
,00, £}
Let us study the two terms of (4.30); hereafter f represents either
(u—d) or (u—d) — (u* —d)*. We introduce the Galerkin approxi-

mation G,(.,.)in ¥, to the Green function G(.,.); we have for
xe Q

J VG,(x, ) Vo, () dy = v,(x) Vv, eV,.

Q

The following standard results will be useful,

@31) G Iy a=c, G I, g=cllnk|", for xeQ.
Then with this function G,, we have

(@ = T f], , = max |EF, Gulx, ).
[ xe)
For v, € V', we develop likewise in (4.18)

EGol=| T Ecrion|+ | T Ecron]

Ke Gy, Ke By

<ch?|f 1l o 1oally, o +2Cer €)1 S g, 0 104114, o »
which implies if v, is G,(x, .)

@32 |[(@ =T S|, o =c{P’Inh|+2(e )} 1/ gm0 -

We can express now g, precisely ; it has to be chosen according to (4.29),
(4.30) and (4.32) such that

2y eo{ Iw(d) —dllg g o + 1} s%,

2¢ e0{Nd) + &)} =

>

Bl

(<3110 £0] "+ 2(cy £} {[w(d) — ]Iy g + 51} s%,
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[y

ey {ed|In o] + 2(c; )} (M(@) + &1} <3

Then for all & < h,, for all [, I* with |/ —N(d)| =&, |[* -~ N(d)| =&, and
for all u, u* e V), with [lu —w(d) |y, o <82 |u*—w(d)| =3, we
have

0,00, 2

@33) ||S.(d1,u) = Si(d 1% u* ) = S,(d, Lu) +
+ 5,(d, 1%, u* )qucom)s% Q=1 + Ju—u* ]y o}

The inequality (4.24) is an immediate consequence of (4.25), (4.33), (2.10)
and (2.12).

We can apply Proposition 3.1. The error estimates are an easy application
of the inequality (3.11) with (4.23) and of the ones in Proposition 2.3. O
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