@article{M2AN_1990__24_4_423_0, author = {Axelsson, O. and Layton, W.}, title = {Defect correction methods for convection dominated convection-diffusion problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {423--455}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {24}, number = {4}, year = {1990}, mrnumber = {1070965}, zbl = {0705.65081}, language = {en}, url = {http://www.numdam.org/item/M2AN_1990__24_4_423_0/} }
TY - JOUR AU - Axelsson, O. AU - Layton, W. TI - Defect correction methods for convection dominated convection-diffusion problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1990 SP - 423 EP - 455 VL - 24 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1990__24_4_423_0/ LA - en ID - M2AN_1990__24_4_423_0 ER -
%0 Journal Article %A Axelsson, O. %A Layton, W. %T Defect correction methods for convection dominated convection-diffusion problems %J ESAIM: Modélisation mathématique et analyse numérique %D 1990 %P 423-455 %V 24 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1990__24_4_423_0/ %G en %F M2AN_1990__24_4_423_0
Axelsson, O.; Layton, W. Defect correction methods for convection dominated convection-diffusion problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 24 (1990) no. 4, pp. 423-455. http://www.numdam.org/item/M2AN_1990__24_4_423_0/
[1] On the numencal solution of convection dominated, convection-diffusion problems, in : Math. Meth. Energy Res. (K. I. Gross, ed. ), SIAM,Philadelphia, 1984. | MR | Zbl
,[2] Stability and error estimates of Galerkin finite element approximations for convection-diffusion equations, I. M. A. J. Numer. Anal., 1 (1981), 329-345. | MR | Zbl
,[3] Boundary layers in linear elliptic singular perturbation problems, SIAM Review, 14 (1972), 225-270. | MR | Zbl
,[4] High resolution minimal storage algorithms for convection dommated, convection diffusion equations, pp 1173-1201 in Tiams : of the Fourth Arms Conf. on Appl. Math. and Comp., 1987. | MR | Zbl
and ,[5] An analysis of a defect correction method for a model convection diffusion equations, SIAM J. N. A. 26 (1989) 169-179. | MR | Zbl
and ,[6] Mixed defect correction iteration for the accurate solution of the convection diffusion equation, pp 485-501 in : Multigrid Methods, L. N. M. vol. 960, (W. Hackbusch and U. Trottenberg, eds.) Springer Verlag, Berlin 1982. | MR | Zbl
,[7] The use of defect correction for the solution of a singularly perturbed o.d.e., preprint. CWI, Amsterdam, 1983. | Zbl
,[8] An analysis of some finite element methods for advection diffusion problems, in : Anal. and Numer. Approaches to Asym. Probs. in Analysis (O. Axelson, L. S. Frank and A. van der Sluis, eds.) North Holland, 1981, 99-116. | MR | Zbl
and ,[9] Finite element methods for linear hyperbolic problems, Comp. Meth. Appl. Mech. Eng., 45 (1984), 285-312. | MR | Zbl
and and ,[10]Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49 (1987), 25-38. | MR | Zbl
and and ,[11] Partial differential equations of elliptic type, Springer Verlag, Berlin, 1980. | MR | Zbl
,[12] A finite element method for convection diffusion problems, Ph. D. Thesis, Chalmers Inst. of Tech., 1982.
,[13] On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), pp 47-89. | MR | Zbl
and ,