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MATHEMATICAL MOOELUHG AND NUMERICAL AHALYStS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 24, n° 2, 1990, p. 211 à 234)

ON THE APPROXIMATION OF A QUASILINEAR MIXED PROBLEM (*)

B. MICHAUX O , J- M. RAKOTOSON (*), J. SHEN (a)

Communicated by R. TEM AN

Abstract. — We analyze in this paper a finite différence scheme for a quasilinear équation
arising from the inverse problem of détermination of transonic blade profiles for tur-
bomachineries. The existence of the solution for the finite différence scheme as well as lts
convergence to the solution of the original équation are established for a small data which
corresponds to a subsonic flow. Various numerical results are présentée for a subsonic flow as
well as for a transonic flow.

Résume. — On analyse dans cet article un schéma de différence finie pour une équation
quasilinéaire apparaissant lors du calcul du problème inverse de détermination de profils d'aubes
transsoniques pour les turbomachines. On établit l'existence de la solution approchée ainsi que sa
convergence vers la solution du problème originel pour des données petites correspondant à un
écoulement subsonique. Plusieurs résultats numériques sont alors présentés pour un écoulement
subsonique ainsi que transsonique.

0. INTRODUCTION

The main object of this article is to present a numerical investigation of a
quasilinear mixed équation. This équation governs the flow of a perfect and
isentropic fluid, obtained when solving the inverse problem of détermination
of transonic blade profiles for turbomachineries, with the Mach number
distributions prescribed along the suction and the pressure side of the blade
profile and the upstream Mach number as well as the inlet and outlet flow
angles given as data.

(*) Reccived in May 1988.
(*) The Institute for Applied Mathematics and Scientific Computing, Indiana University,

Btoomington, IN47405, U.S.A.
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212 B. MICHAUX, J. M. RAKOTOSON, J. SHEN

This équation was established for a fluid verifying the exact isentropicity
law : p/py = est (where 7 is the ratio of spécifie heats (~ 1.4), p and p are
respectively the pressure and the density of fluid) after transformation of the
physical domain to the plane defined by the streamlines and the potential
lines of fluid.

The unknowns of this équation are the velocity, the Mach number and the
density — the two last quantities are given as algebraic functions of the
velocity by virtue of St-Venant's relations for isentropic fluids (see [2], [4]).

The boundary conditions for the velocity are of mixed type, namely, we
use :

— Dirichlet conditions on the profile and for the upstream and downstream
conditions.

— Periodic conditions on the rest of the boundary.

We get the Dirichlet conditions on the velocity by application of the St-
Venant's relations on the Mach number distributions on the profile and
from the data of the upstream Mach number. Actually, by application of the
flow conservation through the blade row, we obtain the downstream
boundary condition on the velocity. For more details about this physical
problem, we refer to [2] and [4].

This équation with Dirichlet boundary condition is a spécifie example of
the gênerai framework considered in [5]. One can find in [5] a throughout
study of the existence and regularity of solution for this kind of quasilinear
elliptic équations. Due to the mixed boundary condition considered here,
the équation is not included in the gênerai framework studied in [5].
Consequently, different techniques from that of [5] are used for some parts
of 'the proof in this paper.

We consider hère a finite différence approximation of the équation. For
the analysis of the problem, we use the variational framework for finite
différences as in J. Céa [1] (see also R. Temam [7]). The discrete functional
space is chosen to be the space of the step functions which allow the
intégration by parts. We can then write the discrete System as a Galerkin
approximation for the variational formulation of the problem. This kind of
approximations is referred in [7] as an external approximation of subspace
of Hl(£l). The analysis for the discrete system involves more difficulties
than in the continuous case. For example, the construction of a suitable test
function is not as straight forward as in [5].

The paper is organized as follows :
In Section 1, we introducé the définition of the weak solutions and the

strong solutions for our équation. We prove that, if a weak solution is
smooth enough (in 7/2(n))? then it is actually a strong solution. In Section 2,
we present a variational formulation for a finite différence scheme. We then
introducé in Section 3 a family of modified problem for the discrete system
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Mathematical Modelling and Numerical Analysis



APPROXIMATION OF A QUASILINEAR MIXED PROBLEM 213

which is not a priori well defined. We prove by passing through the family of
modified problem that the discrete system admits at least one solution and
further more all the solutions are bounded by the prescribed data on the
boundary. In Section 4, we prove the strong convergence of the solution for
the discrete system to a weak solution of the original équation. Finally, we
explain briefly how the nonlinear finite différence scheme is implemented
and we also present two numerical results for the inverse problem.

1. A FUNCTIONAL SETTING OF THE EQUATION

The équation describing a transonic flow in the above environment is the
following

^u _ 1 - M2(u) ^u 1-M2

dx\ p2 hx\ u 9*2

du du du

with

M(u) = u , p ( M ) =

below).
i - i

5

where H is the rectangle [O^Ljx [0, L2] and 3O = ^ j r,- (see figure

vol. 24, n° 2, 1990



214 B. MICHAUX, J. M. RAKOTOSON, J. SHEN

The system (^*) can be reformulate to the following conservative form
(see [5] for detail) :

{SP')

with

du

du

p

For fixed 0 < a < ^ < l , we can show by a simple computation that

(1.2) 1 > ƒ (a) = ƒ(«) ^ ƒ(/<:) > O , V« e [a, X]

and

(1.3) 1

Let

/f (M) = H(a) , VM e [a,

Jfp= {ue H\ü,):u\Tl - w|r2) "|r3 = «|r4} •

For each 4> e /f ^ft) n C ( f l ) , we define

Jfp,+ = {«6 j r p : u | r 5 = <|>}

which is a convex set of Jfp. In particular, ^ ^ 0 is a subspace of
\)

g e H\£l) n C ( f t ) , Q^a

Hypothesis on g

(Hl)

DÉFINITION 1 : We say that u e Hl{d) n Lc0(ft) w a weaA: solution of
problem (<P) if

(i) O < inf essu ^ sup essu < 1 ;
n n

M2AN Modélisation mathématique et Analyse numérique
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APPROXIMATION OF A QUASIUNEAR MIXED PROBLEM 215

(ii) for every v e JfPi0 n L00(n) î

(iii) u-se .#%,<,•
where ( . , . ) is the scalar product of L2(fl) and we dénote hereafter

/2

DÉFINITION 2 : We say that u is a strong solution o f problem (â? ) if
u e H2(£l) and u satisfies the system

PROPOSITION 1 : If u is a weak solution of (1-4) and moreover
u e H2(fl). Then, u is a strong solution o f the problem (&*).

Proof: Since u e H2(£l), we can integrate by parts in (1.4) :

Since D(il) is dense in 3tfp>0 n L°°(H), we dérive that

_ vu _ _o_ ƒ ̂  _̂ L + F ( u ? V M ) = o, in H
9^2 a*i 8xi

This relation and (1-5) imply that

- f (f(u)^r,^
Jan \ dx\ dx

Then, by choosing appropriate function î̂  in JfPj(

easily

du __ du Bw _ 3M r̂ï

? w e deduce

We set hereafter <A(«) W, »> = - ( - , - ) - ( ƒ(«) - , — j .

2. A FINITE DIFFERENCE SCHEME

We will use a finite différence scheme to approximate the problem
. Let us first introducé some notations.

vol 24, n° 2, 1990



216 B. MICHAUX, J. M. RAKOTOSON, J. SHEN

For the sake of simplicity, we will take the uniform discretization over
ft and we assume the discretization step in both direction to be the same,
i.e. Axx = Ax2 = h. We will consider a subsequence {h} -• 0 (still denoted
by {h}) such that the points At (i = 1, ..., 6) are among the set of grid
points.

For each h, we define our computational domain Cth by extending the
original domain ft along the periodical lines as showed in figure below.

The set of discretization points on Th Gx(i = 1, ..., 4) will be denoted

respectively by r/, G- (i = 1, ..., 4). We dénote Nx = -± , N2 = -£ and let

Mh = {xnm - (nh, mh) : 0 ̂  n ** Nu 0 ̂  m ̂  N2} U G[ U G^

M%= {xnm= (nh,mh):l^n^N1-l,l^m^N2-l} U

where G[ = {xn^Nl + 1 : n= Ml9 ..., M2) and G4 ={^ni_j : « =Af3, ..., M4}.

For each

+ ) +g - (Xi, x2), let r(Q) = 2 ) x r2 ~ 2 '
and WQ(x) the characteristic function over r{Q). We then define a set of
step functions 3[h by

uh(x) e Rwith

QeMh

where x = (xl9x2).

IS/PAN Modélisation mathématique et Analyse numérique
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APPROXIMATION OF A QUASILINEAR MIXED PROBLEM 217

For every $ e JffPiç H C (H), we define

and in particular

We will look for the discrete unknown function uh in «8T*. We note that
* and 3Cl are subspace of L2(R2).
Let wfl6 = w(fl/z, bh),we then introducé the following différence operators

c
 Un + l,m ~~ un~l,m a

 Un,m + 1 ~ Un,m - l
1 W"m ^ 2~ft ' 2 " n m = 2ft

,m ^ _ Un,m-l~Un,m

, Ô2 a„m = ^

8 = (ôlf ô2) .

We can readily check the following discrete Poincaré inequality.

LEMMA 1 :

(2.1) ||u||«;c||8u|| , VMear0*.

Ü
\ 1/2

(bu)2 dx\ , then ||8u|| is a
R2 I

n o r m o n SCQ e q u i v a l e n t t o t h e n o r m III u III = | | u | | + | | Ô M | | .

By using these notations, we define our finite différence approximation of
the problem 0P as follows

M*(fi) - h f K ( G ) ) Si w*(G) + Fh(«fc(G), SM*(G)) = 0 ,

According to the définition of 3Ch, we have

« ( G - (0 ,^and

Therefore the unknowns of {^h) are {MA(Ô) : ô e MQ} . Note that we used
the center différences for the second order term while the upwind
différences was used for the first order non-linear term.

It is obvious that {^h) is equivalent to the following variational problem :

(2 2)

vol. 24, n° 2, 1990



218 B. MICHAUX, J. M. RAKOTOSON, J. SHEN

If we dénote

(Ah(uh) vh9 wh) = (02 vh9 02 wh) + (ƒ(uh) bx vhi Ôj wh) .

We can easily check by intégration by parts (see [7]) that (2.2) is equivalent
to

3. A FAMILY OF MODIFIED PROBLEMS

As in [5], [6]j we will introducé a family of modified problems for diverse
reasons, among them are :

— AhJ Fh are only well defined for \u\ e (0, 1) ;
— we do not know a priori if the solution uh of (ëPh) satisfies

KI e (0,1).
Let us introducé now the following truncation functions

ƒ(*)
ƒ(«).
ƒ(«),

*"*(*.
*"*(«,

, M S

a s

, «s

8u),

8 B ) ,

8M) ,

= ir
= M s:

M S

a s

M s

; ^T

BJf
= u ^ A:

and

Fh(u, ÔM)

where /*e(x) is a continuous fonction on i? defined by

*.(*) =
1 , x ^ a
linear , 0 ^ x =s a
0 , x ^ O .

It is clear that, if u(x) is a step function, then F(u), Fzh(u, hu) are also step
functions. We set

(3.1) (Âh(uh) vh, wh) - (02 vh9 h2 wh) + (f(uh) Ô! i?A, Ô! wfc) .

M2AN Modélisation mathématique et Analyse numérique
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APPROXIMATION OF A QUASILINEAR MIXED PROBLEM 219

We dérive from (1.2), (1.3) and the définition of FSfh that

(3.2) (Âh{u)v,v)^mm{l,f{K)}\\hv\\2 = f(K)\\hv\\2, VueâT"

(3.3) \{Âh{u)v,w)\ «max {1, ƒ (a)} ||8v || ||8w||

= ||8o||||Siv|| , V t . i v e f *

(3.4) 0 *ƒ,,*(*, y) « - . Vx,yeR.

We then introducé a family of modified problems defined as follows :

LEMMA 2 : 27ie problem (#6)fc) admits at least one solution.

Bef ore pro ving lemma 2, we introducé first two small lemmas.

LEMMA 3 : For each ue € ffî^, there exists an unique solution w& e f%s for

the variational inequality

(3.5) (Ô2 wE? Ô2(t? - wO) + (/(«s) »I W«, Ô!(I; - w j ) +

Froo/ :

(i) Existence : It is clear that 5T5 is a closed convex set of 9Ch. For fixed
uB e 3C ̂  we define a continuous bilinear form a ( . ? . ) o n S£% x fft by

This form then define a linear continuous function, denoted by Al7 from
ar* into {9Chy wMch is the dual space of 9Ch, namely

( i ^ , v) =,a(w,v), V w e f ^ Vüef 1 1 .

Moreover from (3.2), we dérive that there exists a constant c such that for
all w, v € S t

(3.6) < A 1 W - A 1 Ü J W - Ï ; > ^ / ( X ) | | 8 ( W - Ï ; ) | | 2 ^ 0 .

Thus5 Ai is monotone.
Now we define the operator B:3C^ (2£hy by setting

Bu = Aj w + Fe(w£, 8ME) ,

vol 24, n° 2, 1990



220 B. MICHAUX, J. M. RAKOTOSON, J. SHEN

Before investigating the properties of B, we define rh as the operator of the
projection in J^p onto SCh, namely, for u e Jfp

rhue #

f f u(x)dx, VgeM*.

It can be proven that (see [7])

(3.8) \\Srhu\\.*: ||Vu|| , V u e j f , .

One can now easily check that B enjoys the following properties :

(i) B is monotone, i.e.

(Bw~ Bv,w-v) 2= f(K)\\S(w-v)\\2
9 Vw9ve'SC£.

(ii) B is coercive in the following sense

(Bw - Brh s,w - rh s)

\w-rhs\\ + \\Sw-rhs\
ao(as\\w\\

In fact, the last assertion is a conséquence of property (i) and (2.1), by
observing that w - rhs e 3£Q, Vw e 9£h

s.

(iii) B is continuous on finite dimensional subspace.
We conclude from the corollary 1.8 of [3] (p, 86) that there exists at least

one solution for (3.5).
For the sake of simplicity, we will still use s to dénote rh s in the sequel.

(ii) Uniqueness : If wu w2 are two solutions of (3.5), then

— (Bwi, v — wx) ^ 0 and — (Bw2, v — w2) ^ 0 .

The sum of these two inequalities leads to

(Bwx — Bw2, w1 - w2) ^ 0

we then dérive from (i) that ô(w1 — w2) = 0 in Cl. This and the Poincaré
inequality (2.1) imply that w1 = w2* ^

LEMMA 4 : Let uz e 3fg. Then the unique solution we G SC^ of the problem
(3.5) is the unique solution of the following problem

(3.9)

M2AN Modélisation mathématique et Analyse numérique
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Proof: By observing that v, wEe 3C* implies v ~wee 3£Q, we conclude
that

(Bwe,v ~wz) 5*0 , Vt? € 9£h
s

is equivalent to

(Bwe,v) ssO, Vi?ea r£ .

Since 3£§ is a subspace of L2(R2), the last inequality is actually an equality5T

Proof o f the lemma 2 : Lemma 4 ensures that we can define an operator
T : Xs -• 3CS by we = Tu£. Let us prove that T maps a bail (in #"*) fi (M) to
B(M).

Let ue = we - s e S£§. By définition of wz, we have

^Oe> ye) + (Fe,ft(weJ
 gwe), vz) = 0

which can be written as

Using (3.2), (3.3), (3.4) and lemma 1, we dérive that

v6 -s)

where m (O) is the mesure of O.
Therefore

(3.10) \\*wt\\*

It means that the operator T maps the bail fi (Af) in 3£* to
Furthermore, since 3Eh is finit e dimensional, we readily check that

(3.11) ||8(M|I - «0) II -, 0 => I f{un) - ƒ (MO)| -, 0 .

Now let wn = Tun and w0 = Tu0, then we have from (3.7) :

(Ah(un) wn, v) + (F£ih(un, §un), v) = 0 , V e i J .

vol. 24, n° 2, 1990



222 B. MICHAUX, J. M. RAKOTOSON, J. SHEN

The subtraction of these two équations leads to

(3.12) (Ah(u0)(wn~w0),v) = ((Ah(u0) - Ah(un)) wn, v) +

+ (Fs,h(uo> 5"o) - FEih(un, 8wB), v) .

We then take v = wB - wQ in (3.12), by using (3.2), (3.10) and (3.11), we
dérive :

(Ah(u0)(wn-w0),wn-w0)

- Ah{un)) wn, wn - w0) |
8 « O ) - Ft,h(Un> 8 «J> W„ - W0) |

O(||8(uB-Mo)| | -O)

?. e.

That means T is continuous from 3C^ to 3Ch
$. We can then apply the

Browder's fixed point Theorem which ensures that there exists at least one
solution uSik for the problem (3.9). Evidently, ueh is also a solution of
problem (^ e , A ) . <!T

L E M M A 5 : We assume ( H l ) . Then every solution uzh of (&Bjh) satisfies

a^u^h^K,

Proof: We define two functions (u£ h — a)_ and (uE h — K)+ by

0, if «Ml(*)^<*

0, if ulh(x)^K.

Since uBth\Ts = s, we dérive that (ue h - a ) _ and (ue h — K)+ belong to

W e now take v = (uzh — a ) „ in ( ^ e ) A ) , by the définition of uzh and
(ueh — a ) _ , we dérive

Therefore

" («.,*)«.,*, ("e,*" «)-) = 0

Modélisation mathématique et Analyse numérique
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i.e.

f
{ / } = 0 .{

This can be written as

+ M , A ) M ^ A - a ) , b^u^ - a)_ } = 0 .

We dérive from this inequality and the relation (3.2) that

We then dérive from (2.1) that

(we,A ~ °0- 0 ) = 0 > Le- uejh^a.

Similarly, we take v = (ueh - K)+ in (^Ëth), since (uZih — K)+ s= 0 and
Fe ̂  0, we find

f {hu^hh(ue,h-K)+ + f(üejh)^u^h^(uEih-K)+} =0
Ja

which implies

8(«e f*-*)+ =0,i.e. wej/l^X.

The proof is complete. flT
From lemma 2, we deduce that there exists uh G ̂  such that

UE, h^uh (when e -> 0) and a ̂  u h === K .

Since the problems (^^) and (^ e ^) are both finite dimensional, we can
directly pass to the limit (e ~+ 0) in (^6j^) by noting that

(Âh(u) v, w) = (Ah(u) v,w) ^ a^u^K

we dérive that uh is a solution of {^h). We have then proved the following
theorem.

THEOREM 1 : Under the assumption (Hl). The problem (&h) admits at
least one solution and every solution uh o f {^h) satisfies a ̂  uh*z K. T̂

vol. 24, n° 2, 1990



224 B. MICHAUX, J. M. RAKOTOSON, J. SHEN

4. A STRONG CONVERGENCE RESULT

Our aim now is to pass to the limit (h-+0) in ( ^ ) * Due to the
complexity of the nonlinear term, we need a strong convergence resuit for
{*uh}.

We recall first that :
Given v1? v2 > 0, there exists a e Cl(R) such that (see [6])

(4.1)

Actually, <j(t) is explicitly given by

v1<j'(t)-v2\<r(t)\ = 1 , Wei?
c r ( 0 ) = 0 .

a (f) = - c r ( - f ) , f *=0.

We consider now a discrete function a^ {uh — s ) in $TQ defined by

where a is the function defined in lemma 3 with vx = 1 and v2 = H(a). We
dérive from Theorem 1 and (4.1) that there exists c2 > 0 such that

(4.2) c2 ,

LEMMA 6 : Lef

^ ' t-v 2
ga(t,t) = ]im ga(t,v).

Then for any fixed <x e (0, 1), there exists K E (a, 1) such that

Proof: We note that

especially ga(0, 0) = 1. The lemma then follows by noting that ga(t,v) is
continuous function of {t, Ü). *[f

M2AN Modélisation mathématique et Analyse numérique
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APPROXIMATION OF A QUASILINEAR MIXED PROBLEM 225

Before passing to the limit in (g?'h), let us prove first a stability resuit in

LEMMA 7 : We assume (Hl) and (H2) a =SS(JC) =s= K with K defined in
lemma 6. Then

2 c2 ƒ (a)
(4.3) HB^II^-^i, VA.

Proof: For u e f ^ w e have

(4.4) 8,1, = * l »(C2)[we(x+(0,|))-Wfl(x-(0,|))]
QMh

g e M'1

Replacing f by ah(uh - s) in (4.4) :

(4.5) b2ah(uh-s) =

- s)(Q - (0,

x [S2- u(Q) - 82" s(Q)] WQ_ (o, |

We dérive from (4.3)

(4.6) | |8 2 t ) | | 2 =(3 2 P,8 2 p) = / î
2

By using (1.3) and (4.4), we obtain

(4.7) (H{uh)\h2uh\\<j{v)) =

vol. 24, n° 2, 1990



226 B. MICHAUX, J. M, RAKOTOSON, J. SHEN

Let t — (uh — s)(Q), v = (uh — s)(Q — (0, h)), under the assumption
(H2), we have

(oi-K^v^K-a
I2(a - K) =£ t - v ̂I2(a - K) =£ t - v ̂ 2(K ~ a ) .

Then by using lemma 6 and (4.4)-(4.7), we dérive

(4.8) (82 uh, 52 a , K - 5)) + (H(uh)\b2 uh\\ v(uh ~s))^^ ||Ô2 uh\\
2 -

_ 2 -
2 6 M

x |Ô2- M

= i||&2"J2-fc2 I CT'(

(from (4.2) and the Schwarz inequality)

with Tie e [Q- (0, h), Q].
Similarly

(4.9) (ôj uh, f{uh) Ô! CTAK - *)) + (H(uh) / (MJIÔ! MA|2, v(uk-s))

with te e [ g - (A,0),öl.
Finally, by taking « = O7,(MA - fif) in (^Â)» a n d using (4.8) and (4.9), we

find

i.e.
2 c2 ƒ (a)

We conclude from lemma 7 that (see [7] for details) there exists a function
U G 3tfps n L^iR2), a ̂  £/=£ 7C and a subsequence of {/z}, still denoted
by {h} such that (see [7])

(4.10) uh~ U-+0

(4.11) VSuh-§rh U^O

Modélisation mathématique et Analyse numérique
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weakly in L2(R2) and

(4.12) uh- U^Oa.eAnR2.

We are going to establish an strong convergence for uh which is essential for
passing to the limit in {2P'h)* For each h, we dénote Uh — rh U e 3C^ (see
(3.7)), we.can prove as in [7] that

(4.13) \\Wh~VU\\ - > 0 .

We are now in position to prove

LEMMA 8 : Under the assumption (Hl) and (H2), we have
h

Proof: We take v = cr(uh - Uh) in

(Ah(uh) uh9 <r(uh - Uh)) + (Fh(uh, buh)y v(uh - Uh)) = O

which can be written as

{Ah{uh){uh - Uh), <r(uh - Uh)) + (Fh(uh, 8(M„ - Uh)), *{uh - £/*)>

= - {Fh(uh, Wh), (x(M, - Uh)) - {Ah{uh) Uh, a(uh - Uh)) .

A similar computation as in the proof of lemma 7 leads to :

<j(uh-U
h)\Wh\2dxx

-Uh)(Q-(0,

f
JR

2 a ( K - Uh){Q)) - a((W> - t/ft)(Q - (h, 0»)
r "(2) tf*(ö) - "(Ö - (/«, 0)) + f/ft(ô - (h, 0))
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With Tig G [Q - (0, h), Q], lQ e [Q - (A, 0), g ] -
It is then sufficient to prove that

\At\ ->0 (ft->0)i = 1,2,3 .

From (4.11), we have

(4.14) a(w^ — U ) -^ O a.e. in Ü

a' (uh - Uh) -• a' (0) a.e. in fl .

It is clear from (4.5) and-(4.6) that ||öt/A|| ^ | | ^ | | , we then dérive from
(3.7) and (4.2) that

f \<T(uh-U
h)\\hUh\2*£C3, Vh.

JR2

We now apply the Lebesgue's dominating convergence theorem, by using
(4.14), we obtain

\AX\ =H(a) f
JR2

Now let us deal with A2.

A2 = h2 j ; [a'(K-C

x |ô2- Uh(Q)Si(uk-U
h)(Q)\

= h2 £ [a'((«h-t/*)Tiö)-a'(0)]|^ t/A(Ö)^(wh--t/A)(g)|

+ /z2 £ a'(0)|ô2- ^ ( e ) ô 2 K - ^ ) ( o ) |

^ m a x [ a ' ( ( « A - t / / ï ) - n ö ) - a ' ( 0 ) ] | |ô2 C/'1 Ô2K - Uh)\ dx
Tig J / ? 2

+ c'(0) f
JR

89 UhhJuh-
.2 ' Z ^ ^

— ^ 2 1 ~̂ ~ ̂ 2 2 *

We dérive from (4.14) and Lebesgue's theorem that

"*^21 — *

Finally, since 82 C/A is bounded in L2(R2), we dérive from the weak
convergence (4.11) of §(uh- Uh) that A22 also tends to zero.
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The treatment for A3 is totally the same as for A2. The proof is then
complete. F̂

We deduce from (4.12) and lemma 8 that

(4.16) || || huh || -VU || ^ \\h(uh-U
h)\\ + \\Wh- VU || - . 0

which implies
\huh-VU\ ->0a.e. in/?2 .

With the aid of this strong convergence, the passage to the limit in
(tPh) is immédiate and we find that U\ ü is a weak solution of problem (1.4).
We have then proved

THEO REM 2 : Under the assumption (Hl) and (H2), there exists
u(u = t / j n ) e / f 1 ( n ) H Lœ(n), a^ U ̂  K and a subsequence of {h} , still
noted by {h} , such that

- Vu || -+0

and U is a weak solution of problem (1.4).

Remark :
(i) The assumption (H2) is purely technical. Actually, by using the same

method, we can prove directly that the problem (1.4) admits at least one
solution without assuming (H2).

(ii) The numerical results presented in the next section suggest that our
results hold also for a transonic flow. The theoretical justification of this
resuit is currently under considération.

5. NUMERICAL ASPECTS AND RESULTS

In this section, we do not intend to develop the physical aspects of the
inverse problem, but rather to give a sketch of the numerical computation of
the problem. For further descriptions of the physical aspects as well as for
the existence of a closed profile for the inverse problem, the reader is
referred to B. Michaux [4] and the références therein.

We now recall briefly the numerical setting of the inverse problem for the
détermination of transonic blade profiles.

Under the assumptions that the flow is perfect and isentropic and from
the dynamical équation, curl u = 0 and the continuity équation, div pu = 0
we obtain the équations of the problem (^) which govern the fluid flow in
the computational domain. This équations was established after transform-
ation of the physical domain to the plane defined by the streamlines and the
potential Unes of the fluid (see [4]).
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Example 1 : Subsonic profile.

Figure 1. — Mach number distributions on the profile.

Figure 2. — Profile obtained from the compilation.

Figure 3. — Lines of isomach.
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From the data of the upstream Mach number, the Mach number
distribution on the suction and pressure sides as weil as the inlet and outlet
flow angles which complete the geometry of the considered problem, we
obtain the geometry of the computational domain H -see fig. 1), as well as
the boundary conditions for the problem ( ^ ) .

The streamline curvatures in the physical domain as well as the angle
(<f> ) between the streamline tangent vector and the physical domain basis
vector i can be determined by a function of the aerodynamic unknowns
(velocity u, Mach number M and density p). The cartesian coordinates of
the blade profile are obtained by an intégration of first order differential
équations ; these équations are functions of angle and velocity, along the
streamlines defining the profile.

In addition to the problem (^*), we have the following expression for the
curvatures x •

(5.1) X = P — in H.
ox2

Finally, the déviation that générâtes the blade profiles as well as their
cartesian coordinates are obtained by intégrations of the following équations
in A;

6<J> X
bxi u
8 x COS <b

(5.2) u
3y __ s i n <(>

BC :4>(0,*2) = <bl,x(0,x2) =xo(x2),y(O,x2) = yo(x2)

where 4>u xQ and y0 are physical data.

Numerical methods

Due to the mixed type of the équation of the problem ( ^ ) (elliptic-
hyperbolic), we approximated the partial derivatives by the scheme
considered in section 2, for the mesh points where the flow is subsonic
(M(u) <: 1 ) and by the upwind scheme with three points for the mesh points
where the flow is supersonic {M{u)> 1). Due to the nonlinearity of the
discrete problem (^ f t), to compute the aerodynamic unknowns, we used a
fixed point method for the détermination of the Mach number and the
density, and the Newton method at each itération of the fixed point method
to compute the velocity. The periodic boundary conditions were also treated
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Example 2. Transonic profile.

Figure 4. — Mach number distributions on the profile.

Figure 5. — Profile obtained from the computation.
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Figure 6. — Lines of isomach.

during the application of the Newton method (see [4] for more détails).
Finally, we integrated the first order équations (5.1) and (5.2) by the
trapezoidal numerical intégration rules, to get the geometry of the desired
profile.

Numerical results

Example 1 présents the geometry of a blade profile obtained from data
corresponding to a subsonic flow. For this case, the inlet and outlet angles
correspond respectively to 45° 26' and 11° 28'. The upstream Mach number
is 0.7525. We présent in figure 1 the distributions of Mach number on the
profile. The maximal value of the Mach number on the profile is 0.95. In
particular, we note that the numerical resuit presented in figure 3 confirms
the results of theorem 1.

Example 2 corresponds to a transonic flow. The inlet and outlet angles
are also respectively 45° 26' and 11° 28'. The upstream Mach number is now
0.8525 The distributions of Mach number on the profile in this case is
presented in figure 4. In this case, the maximal value of the Mach number
on the profile is 1.15. We remark that the theoretical resuit of theorem 1 still
holds in this case.

We notice finally that the numerical results of thèse two examples,
obtained by using the actual numerical methods, corresponds well to the
physical expérimentation.
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