A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver
ESAIM: Modélisation mathématique et analyse numérique, Tome 24 (1990) no. 1, pp. 133-150.
@article{M2AN_1990__24_1_133_0,
     author = {Zhang, Lin Bo},
     title = {A second-order upwinding finite difference scheme for the steady {Navier-Stokes} equations in primitive variables in a driven cavity with a multigrid solver},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {133--150},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {24},
     number = {1},
     year = {1990},
     mrnumber = {1034902},
     zbl = {0682.76025},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1990__24_1_133_0/}
}
TY  - JOUR
AU  - Zhang, Lin Bo
TI  - A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1990
SP  - 133
EP  - 150
VL  - 24
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1990__24_1_133_0/
LA  - en
ID  - M2AN_1990__24_1_133_0
ER  - 
%0 Journal Article
%A Zhang, Lin Bo
%T A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1990
%P 133-150
%V 24
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1990__24_1_133_0/
%G en
%F M2AN_1990__24_1_133_0
Zhang, Lin Bo. A second-order upwinding finite difference scheme for the steady Navier-Stokes equations in primitive variables in a driven cavity with a multigrid solver. ESAIM: Modélisation mathématique et analyse numérique, Tome 24 (1990) no. 1, pp. 133-150. http://www.numdam.org/item/M2AN_1990__24_1_133_0/

[1] J. D. Bozeman &C. Dalton, Numerical Study of Viscous Flow in a Cavity, J. of Comp. Phys., 12, 1973, pp. 348-363. | Zbl

[2] A. Brandt& N. Dinar, Multigrid Solutions to Elliptic Flow Problems, Numerical Method IN PDEs, Ed. S. V. Parter, Academic Press, New York, 1977, pp. 53-147. | MR | Zbl

[3] Ch. H. Bruneau&C. Jouron, Efficient Schemes for Solving Steady Navier-Stokes Equations, to appear.

[4] M. Fortin,R. Peyret&R. Temam, Résolution Numérique des Équations de Navier-Stokes pour un Fluide Incompressible, Journal de Mécanique, Vol. 10 N°3, septembre 1971. | MR | Zbl

[5] U. Ghia,K. N. Ghia& C. T. Shin, High-Re Solutions for Incompressible Flows Using the Navier-Stokes Equations and a Multigrid Method, J. of Comp. Phys., 48, 1982, pp. 387-411. | Zbl

[6] R. Schreiber&H. B. Keller, Driven Cavity Flows by Efficient Numerical Techniques, J. of Comp. Phys., 49, 1983, pp. 310-333. | Zbl

[7] S. Y. Tuann&M. D. Olson, Review of Computational Methods for Recirculating Flows, J. of Comp. Phys., 29, 1978, pp. 1-19. | MR | Zbl

[8] S. P. Vanka, Block Implicit Multigrid Solutions of Navier-Stokes Equations in Primitive Variables, J. of Comp. Phys., 65, 1985, pp. 138-158. | MR | Zbl

[9] L. B. Zhang, Résolution Numérique des Équation de Navier-Stokes par la Méthode multigrille, University Thesis, Orsay, 1987.