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MOOÉUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 23, n° 4, 1989, p 615-625)

ON THE OPTIMAL DESIGN OF ELASTIC SHAFTS (*)

by Raul B. GONZALEZ DE PAZ (*)

Commumcated by R. Teman

Abstract. — In order to study the design ofhollow shafts with maximal torsional ngidity, we
define a functional associated with the shape of the shaft and investigate lts minimization
Introducing a relaxation by means of a duality approach we are able to apply convex analysis
techniques and prove the existence of the optimal design.

Résumé. — Afin d'étudier la forme de poutres creuses de rigidité maximale a la torsion, on
définit une fonctionnelle associée à la forme de la section droite et on cherche à la minimiser. En
introduisant une relaxation moyennant une certaine classe de multiplicateurs de Lagrange, on
applique des techniques d'analyse convexe pour montrer l'existence de la section droite optimale

1. INTRODUCTION

We consider the problem of torsion of a hollow elastic shaft. We dénote
by Cl the région occupied by the cross section in the x — y plane, which we
shall assume to be doubly connected. We dénote by Fo and Y the interior
and exterior boundary of the domain Cl. The direction of the applied torque
coincides with the z-axis. We assume that the shaft material is homogeneous
and isotropic. We express the nonzero components of the stress tensor in
terms of the stress function :
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where G is the shear modulus, 0 is the angle of twist per unit length of the
shaft and u is the stress function satisfying :

ux = du/bx , uy = bu/by .

It is well known that for this case, the torsion problem is reduced to
finding the stress function u such that :

-Au = 2 in Ci (1.1)
M = 0 on T (1.2)
u = c on Fo (1.3)

(1.4)

where Ao is the area of the région bounded by the curve Fo and c is an
unknown quantity whose value can be determined using (1.4). The torsional
rigidity Ka is given by

l f \ (1.5)

Let us assume that the boundary Fo and the following îsopenmetric
condition are given :

meas Q = A (1-6)

where A is a positive constant. We look for the shape of Cl such that the
rigidity Ka is maximized. Among others, this problem has been studied by
N. Bamchuk [3], see also other related papers by Cea [6] and Cea-
Malanowski [8].

We remark that by minimizing the functional

r r
|Vt?|2rf<o-2 v

Ja Ja
on a suitable function space we obtain a solution for the problem (1.1)-(1.4).
For the correspondmg solution ua we have :

Thus, the domain CL that maximizes Ka, minimizes J(ua). By using this
property, we shall define a new « relaxed » problem and applying some
convex analysis techniques we shall prove the existence of the optimal
domain H. In f act, the relaxed problem leads to the mimmization of a
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ON THE OPTIMAL DESIGN OF ELASTIC SHAFTS 617

concave functional on a convex set of functions. The concavity structure will
allow us to prove that there exists a characteristic function where the
minimum is attained. This approach is similar to the one used by Gonzalez
de Paz [13] for the study of the existence of a domain with minimal capacity
when the interior boundary is unknown. In the appendix we show how our
results can be applied to study capacity problems where the exterior
boundary is unknown a priori.

This research was partly done while the author was visiting the Courant
Institute of Mathematical Sciences in New York supported by a Fulbright
Grant. The author wishes to thank R. Kohn and the référée for their advices
and criticisms, they were very helpful for the achievement of this work.

2. THE RELAXED PROBLEM

Let fl0 be a star-shaped, connected, bounded domain in R2 with Lebesgue
measure Ao and boundary Fo which is Lipschitz continuous. Let BR be an
open dise with center at some point in the interior of fi0 ; in order to allow
for the feasible domains to be contained in the dise, we choose the radius R
large enough so that for d = dist (dBR, Fo), the annulus with outer
boundary 3BR and width d has an area greater than the given constant A, we
put DR = BR\ÇÏ0 and dénote by || . || the usual L2-norm in BR. Furthermore,
let (x be a positive, bounded function such that :

0 === \x ̂  1 almost everywhere in B R (2.1)

M* diù = Ao + A (2.2)

|x<io> = A0 . (2.3)
n0

Following the définitions introduced by Lanchon [16], we put

ER = {vive HQ(BR), v = const. on ü 0 } ;

hère HQ(BR) dénotes the usual Sobolev space (see Neças [18]).
We now define on the Sobolev space the functional

\ |Vt>|2d<o- f \Lfvdi*. (2.4)
JBR JBR

We remark that for the special case of the elastic torsion, the function ƒ is a
given positive constant. This special case is contained in our framework if
we suppose that ƒ is strictly positive and bounded.

vol. 23, n° 4, 1989



618 R. B. GONZALEZ DE PAZ

The problem P (|x) : The minimization of v -> J^(v) on £# was treated by
H. Lanchon [16]. This functional is convex and weakly lower semiconti-
nuous, so that for each jx e L™(BR, IR+ ) there exists au^e ER such that the
functional is minimized (cf. Ekeland-Temam [10], Moreau [17]) and
u^ is the weak solution of the following boundary value problem :

xf in DR

= c on f
= 0 on a

= BR/n0

]BR

(2.5)
(2.6)
(2.7)

Jr0 Jo
|xƒ d<» . (2.8)

In (2.8) n dénotes the unit normal exterior to Ho at each point of
r0. In the case ƒ is a constant and (x= 1 on O0, this is the classical intégral
constraint (1.4).

Remark 2.1 : The element u^ is a non-negative function. In f act define

w+ = max (u^, 0) .

This is an element of H$(BR) (cf Kinderlehrer-Stampacchia [15]). Moreo-
ver, because of the extremality property of u^ we have : u+ e ER and

[kfu+ doi = ixfu^ dio .
BR JBR

If u^ were strictly négative on a set of positive measure, then

so that

This is a contradiction, so u* = u^.

Remark 2.2 : The function u^ is an element of C1'1(DR). First we recall

that u^ s CltK(DR) for 0 ̂  a < 1 (see Kinderlehrer-Stampacchia [13]). It

follows that u^ is a Lipschitz function. Besides, Aŵ  e Lœ(DR). From these
results and the boundary conditions (2.6) and (2.7) it follows :

(see C. Gebhardt [11] and R. Jensen [24]), this implies that Vu^ is a
Lipschitz function (for the définition of W2^(DR), see J. Neças [18]).
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ON THE OPTIMAL DESIGN OF ELASTIC SHAFTS 619

The optimization problem related to |x ; We now define the functional O
on L°°(BR, (R+ ) as follows :

ueER

We study the problem of minimization of <ï> in C c= LCO(BR, R+ ) where C
dénotes the convex set defined by the constraints (2.1), (2.2) and (2.3). The
convex set C is compact for the topology o-(L°°, L1). We shall prove that the
functional <E> is continuous for the same topology in order to show the
existence of the minimizing element.

THEOREM 2.1 : The functional <ï> is <j(Lœ, l^continuons on C.

Proof: Firstly we establish the following assertion : there exists a bail
Bp in HQ(BR) of radius p such that for every JUL e C :

min Jp(u) = min J^(u).
ueER ueERHB?

Let (x be given, and let u^ be the corresponding minimizing element of
J^ in ER, then for every v e ER we have :

Here the parentheses dénote the usual scalar product in L2(BR). For the
special case v = u^ :

and by using the Cauchy-Schwarz and the Poincaré inequality :

where a and a' are constants depending on the bail BR, then we obtain for
every (x € C :

lk/llz.« Il/Ht
and finally,

so the expected bail has radius p = a' |, 3 Nz/

Because of the Rellich-Kondrasov injection theorem, the set
K = ERn Bp is compact in L 1 ^ ) (cf. Neças [16]). Besides, it is well
known that if a family of affine functions is equicontinuous, the lower
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620 R. B. GONZALEZ DE PAZ

enveloppe of this family is a continuous function. So if we define the family
{Ju

 : M* -* ^»i(«)> u € K} , we see that

<D<» = inf / ^ ) = / ^ ) .
«eu:

Let 6 > 0 be given, and let jx e C be such that jx — jx0 e (l /ei£)0
? the

polar set of ( l / e ) i £ . The latter is strongly compact in L1, so jx is in a
neighborhood of jx0 for the topology of the uniform convergence of compact
sets of L1, so that we have for every u E K:

where the brackets dénote the (L00, L1) duality. Then, for every we K:

which stablishes the equicontinuity. We need only to remark that the
topology used above is equivalent to the weak topology ^(L0 0 , L1) on the
unit bail of L ° ° ( ^ ) ? so that the functional is continuous for this topology on
C (cf. Bourbaki [4]). This gives our next resuit :

THEOREM 2.2 : There exists an element \x,R e C such that

= min<ï>(fx).

Remark 2.3 : The functional <î> is the iower enveloppe of affine linear
funetions, so that it is concave. This implies that among the minimizing
éléments there are extremal points of C, and these are characteristic
fonctions of sets with measure A +A0 (cf. Castaing-Valadier [5]). So there
exists (Xfl = XÛ with H = O0 U OK with €tR an optimal set. We shall study the
necessary conditions of optimality in order to obtain a description of the
optimal domain as the solution of a free boundary value problem.

3. NECESSARY CONDITIONS OF OPTIMALITY AND THEIR CONSEQUENCES

THEOREM 3.1 : The functional <I> has a weak derivative in the sensé o f
Gâteaux for every fx e L ° ° ( ^ 5 U+ )•

Proof: Being <ï> the Iower enveloppe of a family of affine functions, it
follows from a theorem of Valadier [21] :

*'(M. ;<*)=*- < K , a > L U » (3.1)

for every a = 7 - jx with 7 G Lm(BR, R+ ).
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ON THE OPTIMAL DESIGN OF ELASTIC SHAFTS 621

Remark 3.1 : 4> is concave and ^(L00, L^-continuous, so it follows that its
derivative is a Frechet-derivative also (<;ƒ Valadier [21]).

Remark 3.2 : The first order necessary conditions of optimality give for
every a = \x - \xR, ^ e C :

- (fuR,*)^0 (3.2)

with uR the corresponding solution for the boundary value problem

If we restrict ourselves to characteristic fonctions, we obtain for every
domain Q, in DR with measure equal to A and such that Fo is contained in

(3.3)

The inequality (3.3) states that the integrand fuR must be « placed » in
DR so that the intégral has a maximal value. We dénote F the boundary of
ftR related to DR, F can be interpreted as a f ree boundary and we have :

THEO REM 3.2 : Let f be a constant functiony then there exists a positive
number pR such that

tlR = {xeDR\uR(x)>pR}

where the equality is understood to hold a.e., and

r = {xeDR\uR(x)=pR} .

Proof: The existence of a Lagrange multiplier related to the constraint

(2.2) for the functional jx —• fuR \x d<x> is a classical f act (cf. Cea-
JBR

Malanowski [8]). This means, there exists a constant pR such that for ail
éléments 7 of the unit bail in L c o ( ^ , 1R+ ) :

\xuR du> - pR \ ^ diù ^ yuR du - pR \ y do> .
JBR JBR JBR JBR

Then we have for almost every x G BR :

uR(x)>pR implies |x(*) = 1
uR(x) <pR implies |x (x) = 0 .

For tl as in Remark 2.3 we define G = BR\tl, and it follows :

{xeBR\uR(x)>pR} c=ft

{xeBR\uR(x)^pR} c G .

vol. 23, n° 4, 1989



622 R. B GONZALEZ DE PAZ

Both inclusions must be understood in the sense almost everywhere.
Furthermore we have

fiez {xeBR\uR{x)^pR} a.e.

which implies

nRçz {xeDR\uR(x)^pR} a.e.

From the définition of £lR it follows :

{xeDR\uR(x)*zpR} ^nR a.e.

Besides, because of the regularity of ƒ : uR e H2(DR), so that the équation
(2.5) is verified in the sense almost everywhere. This implies (see Zolesio
[23]) : meas ( {x e DR\uR(x) = pR} n Q,R) = 0 and the first assertion of the
theorem is proved.

The characterization of F follows from the fact that the function
uR is continuous and superharmonic in DR (see Gonzalez de Paz [13]).

COROLLARY 3.3 : The support o f the measure |x da is the compact set :

ft = {xsBR\uR(x)^pR} .

Remark 3.3 : For the boundary condition (2.6) we have :

uR = c^pR on ft0.

We shall omit for the rest of this paragraph the index R.

Remark 3.4 : The function u e HQ(BR) is a solution of the following f ree
boundary value problem :

- AM = ƒ in a (3.4)

Au = 0 in DR\CÏ (3.5)
u=p on r (3.6)
u = c on r 0 . (3.7)

Remark 3.5 : We should point out that in the case Ho is not star-shaped,
DR\Ù might have more than one connected component ; which should
mean the existence of more « holes » in the cross section of the shaft.

Remark 3.6 : The gradient of u is continuous, so that

(Vw)+ = (Vu)" on r

where the plus sign dénotes the limit at the boundary taken in the inward
direction to Cl and the minus sign dénotes the limit in the outward direction.
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ON THE OPTIMAL DESIGN OF ELASTIC SHAFTS 623

Because of the regularity of u, it is known that free boundaries of this type
are locaily Lipschitz (cf. Kinderlehrer-Stampacchia [15]). If we recall the
f act that the free boundary F is a level set of M, we have in the
neighborhoods of points where | Vu | > 0 on F :

du/dn+ = du/dn~ on F .

Some analog free boundary value problems have been studied by Zolesio
[22] using other optimal design techniques.

4. APPENDIX

The method described in this paper can be applied to prove the following
resuit :

THEOREM : Let Fo be a given closed Lipschitz continuons curve, non
intersecting itself so that the domain Ci0 inclosed is star-shaped. Let W be the
set of ail doubly connected domains Ci with a given measure and with
Fo as inner boundary. Then there exists a domain Ci* G W such that for ail
tleW:

Proof: We need only to remark that for the case ƒ = s with £ a positive
constant, the stated results can be applied. Replacing the intégral constraint
(2.8) with the Dirichlet condition u = 1 on Qo all the main results remain
unchanged. For a given domain Ci, the corresponding solution uz of the
boundary value problem has the form ue — u0 + ue, where u0 is the capacity
potential of the domain £l0 related to il and uE the corresponding solution of
the Poisson équation in Ci with homogeneous Dirichlet conditions. So we
have :
Ene (O) = 1/2 Capn(no) + (Vw0, Vue) +

+ 1/2 | |Vwe|2rfü>-s ued<*. (4.1)
J J

By applying theorem 2.2 for a given s, we know there exists a domain
O* e W such that for every f î e W :

Ene (O*)^En e (H) .

Being u0 harmonie in fi, the second term of the right side in (4.1)
vanishes. Besides, it is known that in the case e -• 0, then uz -• 0 strongly in
H1 (Ci), this implies for every Ci e W:

which gives the resuit.
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624 R. B. GONZALEZ DE PAZ

Other authors have proved that in the case the free boundary F is smooth
enough :

| Vu | = X on F

where X is a positive constant which can be interpreted as a Lagrange

multiplier for the functional Ci -• | Vua |
2 d<x> related to the measure

Jn
constraint of the domain, hère un dénotes the corresponding potential (see
for example Banichuk [3]).

It should be mentioned that Alt-Cafarelli [2] study the following related
problem : find v e K which minimizes the functional

= f |Vl?|2dül + Ö f
Ja Ja

where K = {v e L£c(IÏ)|VU e L2(fl), v = w° on 5} , hère w°>0, g ^ O
and S cz dfl are given. For the case that Q and u° are constants, the solution

of their problem solves ours for A = Xu>o ̂ tó-
Jn

Besides, the stationary points of the functional / have the property

| V M | = Ô on r = f î n a { « > 0 } .

In their case, Q is given and the constant A is a resuit ; in ours, A is given
and the constant X is a conséquence of the necessary conditions of optimality
(see another related results using different techniques in Acker [1]).
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