@article{M2AN_1989__23_3_489_0, author = {Mora, Xavier and Sol\`a-Morales, Joan}, title = {Inertial manifolds of damped semilinear wave equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {489--505}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {23}, number = {3}, year = {1989}, mrnumber = {1014487}, zbl = {0699.35179}, language = {en}, url = {http://www.numdam.org/item/M2AN_1989__23_3_489_0/} }
TY - JOUR AU - Mora, Xavier AU - Solà-Morales, Joan TI - Inertial manifolds of damped semilinear wave equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1989 SP - 489 EP - 505 VL - 23 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1989__23_3_489_0/ LA - en ID - M2AN_1989__23_3_489_0 ER -
%0 Journal Article %A Mora, Xavier %A Solà-Morales, Joan %T Inertial manifolds of damped semilinear wave equations %J ESAIM: Modélisation mathématique et analyse numérique %D 1989 %P 489-505 %V 23 %N 3 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1989__23_3_489_0/ %G en %F M2AN_1989__23_3_489_0
Mora, Xavier; Solà-Morales, Joan. Inertial manifolds of damped semilinear wave equations. ESAIM: Modélisation mathématique et analyse numérique, Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987, Tome 23 (1989) no. 3, pp. 489-505. http://www.numdam.org/item/M2AN_1989__23_3_489_0/
[1] The Morse-Smale property for a semilinear parabolic equation, J. Diff. Eq. 62 (1986), 427-442. | MR | Zbl
,[2] Uniform asymptotics of the solutions of singularly perturbed evolution equations (in russian), Uspekhi Mat. Nauk 42(5) (1987),231-232.
, ,[3] Invariant manifolds for flows in Banach spaces, J. Diff. Eq. 74 (1988), 285-317. | MR | Zbl
, ,[4] An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory, Springer (1984). | MR | Zbl
, , ,[5] Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Eq. 73 (1988), 197-214. | MR | Zbl
, ,[6] On local homeomorphisms of Euclidean spaces, Bol. Soc, MatMexicana 5 (1960), 220-241. | MR | Zbl
,[7] Some infinite-dimensional Morse-Smale Systems defined byparabolic partial differential equations, J. Diff. Eq. 59 (1985), 165-205. | MR | Zbl
,[8] Finite-dimensional attracting invariant manifolds for damped semilinear wave equations, Res. Notes in Math. 155 (1987), 172-183. | MR | Zbl
,[9] Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, in « Dynamics of Infinite Dimensional Systems » (edited by S. N. Chow, J. K. Hale), Springer (1987), 187-210. | MR | Zbl
, ,[10] The singular limit dynamics of semilinear damped wave equations, J. Diff, Eq. 78 (1989), 262-307. | MR | Zbl
, ,[11] Center manifolds and contractionson a scale of Banach spaces, J. Funct. Anal 72 (1987), 209-224. | MR | Zbl
, ,