Inertial manifolds of damped semilinear wave equations
ESAIM: Modélisation mathématique et analyse numérique, Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987, Tome 23 (1989) no. 3, pp. 489-505.
@article{M2AN_1989__23_3_489_0,
     author = {Mora, Xavier and Sol\`a-Morales, Joan},
     title = {Inertial manifolds of damped semilinear wave equations},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {489--505},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {23},
     number = {3},
     year = {1989},
     mrnumber = {1014487},
     zbl = {0699.35179},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1989__23_3_489_0/}
}
TY  - JOUR
AU  - Mora, Xavier
AU  - Solà-Morales, Joan
TI  - Inertial manifolds of damped semilinear wave equations
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1989
SP  - 489
EP  - 505
VL  - 23
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1989__23_3_489_0/
LA  - en
ID  - M2AN_1989__23_3_489_0
ER  - 
%0 Journal Article
%A Mora, Xavier
%A Solà-Morales, Joan
%T Inertial manifolds of damped semilinear wave equations
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1989
%P 489-505
%V 23
%N 3
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1989__23_3_489_0/
%G en
%F M2AN_1989__23_3_489_0
Mora, Xavier; Solà-Morales, Joan. Inertial manifolds of damped semilinear wave equations. ESAIM: Modélisation mathématique et analyse numérique, Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987, Tome 23 (1989) no. 3, pp. 489-505. http://www.numdam.org/item/M2AN_1989__23_3_489_0/

[1] S. Angenent, The Morse-Smale property for a semilinear parabolic equation, J. Diff. Eq. 62 (1986), 427-442. | MR | Zbl

[2] A. V. Babin, M. I. Vishik, Uniform asymptotics of the solutions of singularly perturbed evolution equations (in russian), Uspekhi Mat. Nauk 42(5) (1987),231-232.

[3] S. N. Chow, K. Lu, Invariant manifolds for flows in Banach spaces, J. Diff. Eq. 74 (1988), 285-317. | MR | Zbl

[4] J. K. Hale, L. T. Magalhâes, W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory, Springer (1984). | MR | Zbl

[5] J. K. Hale, G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Eq. 73 (1988), 197-214. | MR | Zbl

[6] P. Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc, MatMexicana 5 (1960), 220-241. | MR | Zbl

[7] D. B. Henry, Some infinite-dimensional Morse-Smale Systems defined byparabolic partial differential equations, J. Diff. Eq. 59 (1985), 165-205. | MR | Zbl

[8] X. Mora, Finite-dimensional attracting invariant manifolds for damped semilinear wave equations, Res. Notes in Math. 155 (1987), 172-183. | MR | Zbl

[9] X. Mora, J. Solà-Morales, Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, in « Dynamics of Infinite Dimensional Systems » (edited by S. N. Chow, J. K. Hale), Springer (1987), 187-210. | MR | Zbl

[10] X. Mora, J. Solà-Morales, The singular limit dynamics of semilinear damped wave equations, J. Diff, Eq. 78 (1989), 262-307. | MR | Zbl

[11] A. Vanderbauwhede, S. A. Van Gils, Center manifolds and contractionson a scale of Banach spaces, J. Funct. Anal 72 (1987), 209-224. | MR | Zbl