@article{M2AN_1989__23_3_379_0, author = {Biler, Piotr}, title = {Asymptotic behaviour of strongly damped nonlinear hyperbolic equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {379--384}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {23}, number = {3}, year = {1989}, mrnumber = {1014479}, zbl = {0702.35025}, language = {en}, url = {http://www.numdam.org/item/M2AN_1989__23_3_379_0/} }
TY - JOUR AU - Biler, Piotr TI - Asymptotic behaviour of strongly damped nonlinear hyperbolic equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1989 SP - 379 EP - 384 VL - 23 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1989__23_3_379_0/ LA - en ID - M2AN_1989__23_3_379_0 ER -
%0 Journal Article %A Biler, Piotr %T Asymptotic behaviour of strongly damped nonlinear hyperbolic equations %J ESAIM: Modélisation mathématique et analyse numérique %D 1989 %P 379-384 %V 23 %N 3 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1989__23_3_379_0/ %G en %F M2AN_1989__23_3_379_0
Biler, Piotr. Asymptotic behaviour of strongly damped nonlinear hyperbolic equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 23 (1989) no. 3, pp. 379-384. http://www.numdam.org/item/M2AN_1989__23_3_379_0/
[1] Nonlinear second order equations with applications to partial differential equations, J. Diff. Eq., 58 (1985) 404-427. | MR | Zbl
, ,[2] Convergence properties of the strongly damped nonlinear Klein-Gordon equation, J. Diff. Eq., 67 (1987) 243-255. | MR | Zbl
,[3] Large time behaviour of periodic solutions to dissipative equations of Korteweg-de Vries-Burgers type, Bull. Pol. Ac. Sc. Math., 32 (1984) 401-405. | MR | Zbl
,[4] Exponential decay of solutions of damped nonlinear hyperbolic equations, Nonlinear Analysis, 11 (1987) 841-849. | MR | Zbl
,[5] A singular perturbation problem for nonlinear damped hyperbolic equations, Proc. Roy Soc. Edinburgh A, to appear. | MR | Zbl
,[6] Asymptotic behavior, as t → + ∞, of solutions of Navier Stokes equations and nonlinear spectral manifolds, Indiana Univ. Math. J., 33 (1984) 459-477. | MR | Zbl
, ,[7] Long time behaviour of solutions of abstract inequalities applications to thermo-hydraulic and magnetohydrodynamic equations, J. Diff. Eq., 61 (1986) 268-294. | MR | Zbl
,