@article{M2AN_1988__22_2_251_0, author = {Gilbert, Jean Charles}, title = {Mise \`a jour de la m\'etrique dans les m\'ethodes de {quasi-Newton} r\'eduites en optimisation avec contraintes d'\'egalit\'e}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {251--288}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {22}, number = {2}, year = {1988}, mrnumber = {945125}, zbl = {0657.65087}, language = {fr}, url = {http://www.numdam.org/item/M2AN_1988__22_2_251_0/} }
TY - JOUR AU - Gilbert, Jean Charles TI - Mise à jour de la métrique dans les méthodes de quasi-Newton réduites en optimisation avec contraintes d'égalité JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1988 SP - 251 EP - 288 VL - 22 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1988__22_2_251_0/ LA - fr ID - M2AN_1988__22_2_251_0 ER -
%0 Journal Article %A Gilbert, Jean Charles %T Mise à jour de la métrique dans les méthodes de quasi-Newton réduites en optimisation avec contraintes d'égalité %J ESAIM: Modélisation mathématique et analyse numérique %D 1988 %P 251-288 %V 22 %N 2 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1988__22_2_251_0/ %G fr %F M2AN_1988__22_2_251_0
Gilbert, Jean Charles. Mise à jour de la métrique dans les méthodes de quasi-Newton réduites en optimisation avec contraintes d'égalité. ESAIM: Modélisation mathématique et analyse numérique, Tome 22 (1988) no. 2, pp. 251-288. http://www.numdam.org/item/M2AN_1988__22_2_251_0/
Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics 16/1,1-3. | MR | Zbl
(1966.Parametric identification of the plasma current density from the magnetic measurements and the pressure profile, code IDENTC Report of JET contract number JT3/9008.
, , (1985).Une éxtension de la programmation quadratique successive. Lecture Notes in Control and Information Sciences 63, 16-31. A. Bensoussan, J. L Lions (eds). Springer-Verlag. | MR | Zbl
, (1984.A new double-rank minimization algorithm. Notices of the American Mathematical Society 16, 670.
(1969).On the local and superlinear convergence of quasi-Newton methods. Journal of the Institute of Mathematics and its Applications 12, 223-245 | MR | Zbl
, , (1973).An example of irregular convergence in some constrained optimization methods that use the projected hessian. Mathematical Programming 32, 232-237. | MR | Zbl
(1985).Continuity of the null space basis and constrained optimization. Mathematical Programming 35, 32-41. | MR | Zbl
, (1986).Nonlinear programming via an exact penalty function: asymptotic analysis. Mathematical Programming 24, 123-136. | MR | Zbl
, (1982 a).Nonlinear programming via an exact penalty function: global analysis. Mathematical Programming 24, 137-161. | MR | Zbl
, (1982 b).On the local convergence of a quasi-Newton method for the nonlinear programming problem. SIAM Journal on Numerical Analysis 21/4, 755-769. | MR | Zbl
, (1984.A characterization of superlinear convergence and its application to quasi-Newton methods Mathematics of Computation 28/126, 549-560. | MR | Zbl
, (1974)Quasi-Newton methods, motivation and theory. SIAM Review 19, 46-89. | MR | Zbl
, (1977).A new approach to variable metric algorithms. Journal 13/3, 317-322. | Zbl
(1970).Practical Methods of Optimization Vol. 2 : Constrained Optimization. John Wiley & Sons. | MR | Zbl
(1981).Minimizing a differentiable function over a differential manifold. Journal of Optimization Theory and Applications 37/2, 177-219. | MR | Zbl
(1982a).Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization. Mathematical Programming Study 16,18-44. | MR | Zbl
(1982b).The convergence of variable metric matrices in unconstrained optimization Mathematical Programming 27, 123-143. | MR | Zbl
, (1983).Une méthode à métrique variable réduite en optimisation avec contraintes d'égalité non linéaires Rapport de recherche de l'INRIA RR-482, 78153 Le Chesnay Cedex, France.
(1986a).On the local and global convergence of a reduced quasi-Newton method Rapport de recherche de l'INRIA RR-565, 78153 Le Chesnay Cedex, France (version révisée dans IIASA Workmg Paper WP-87-113). | Zbl
(1986b).Une méthode de quasi-Newton réduite en optimisation sous contraintes avec priorité à la restauration. Lecture Notes in Control and Information Sciences 83, 40-53. A. Bensoussan, J. L. Lions (eds), Sprmger-Verlag. | MR | Zbl
(1986b).(-) (en préparation).
A family of variable metric methods derived by variational means. Mathematics of Computation 24, 23-26. | MR | Zbl
(1970).Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Mathematical Programming 11, 263-282. | MR | Zbl
(1976).A globally convergent method for nonlinear programming. Journal of Optimization Theory and Applications 22/3, 297-309. | MR | Zbl
(1977).A superlinearly convergent algorithm for constrained optimization problems. Mathematical Programming Study 16, 45-61. | MR | Zbl
, (1982).On the use of approximations in algorithms for optimization problems with equality and inequality constraints. SIAM Journal on Numerical Analysis 15/4, 674-693. | MR | Zbl
, (1978).Projected Hessian updating algorithms for nonlinearly constrained optimization. SIAM Journal on Numerical Analysis 22/5, 821-850. | MR | Zbl
, (1985).On the convergence of the variable metric algorithm. Journal of the Institute of Mathematics and its Applications 7, 21-36. | MR | Zbl
(1971).Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Nonlinear Programming, SIAM-AMS Proceedings, Vol. 9, American Mathematical Society, Providence, R.I. | MR | Zbl
(1976).The convergence of variable metric methods for nonlinearly constrained optimization calculations. Nonlinear Programming 3, 27-63. O. L. Mangasarian, R. R. Meyer, S. M. Robinson (eds), Academic Press, New York. | MR | Zbl
(1978).Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation 24, 647-656. | MR | Zbl
(1970).A simplicial algorithm for concave programming. Ph. D. Thesis. Graduate School of Business Administration, Havard Univ., Cambridge, MA.
(1963).An only 2-step Q-superlinear convergence example for some algonthms that use reduced Hessian approximations Mathematical Programming 32, 224-231. | MR | Zbl
(1985).