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MATHEMATÏCAL MOOELUNG AND NUMERIGAL ANAIYS1S
MQDÉUSAT10N MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 22, n 1, 1988, p. 119 à 158)

A VARIATIONAL METHOD FOR
PARAMETER IDENTIFICATION (*)

by Robert V. KOHN (*) and Bruce D. LOWE (2)

Communicated by G. Papanicolaou

Abstract. — We study a parameter identification prohlem associated witk the two dimensional
diffusion équation. We consider the steady state situation, where the équation is elliptic and of
divergence form. For Neumann boundary conditions, a variational method is proposed for the
reconstruction of the unknown scalar conductivity. The variational method is based on the
minimization of a convex functional, and the reconstructed conductivity is a continuous,
piecewise linear function on a triangulation of the two dimensional domain. Stability results are
proved and numerical examples are considered to test the performance. A method is then
proposed for the reconstruction of a matrix conductivity.

Resumé. — On étudie un problème d'identification de paramètres associé à des équations de
diffusion en dimension 2. On considère l'état stationnaire lorsque Véquation elliptique est sous
forme divergentielle ; pour les fonctions aux limites de Neumann une méthode variationnelle est
proposée pour la reconstruction de la conductivité scalaire inconnue ; la méthode variationnelle
est basée sur la minimisation d'une fonctionnelle convexe et la conductivité reconstruite est
conûnuejinéaire par morceaux sur une triangulation du domaine bidimensionnel Des résultats
de stabilité sont démontrés et des exemples numériques sont considérés^ your tester les
performances. Une méthode est ensuite proposée pour la reconstruction d'une conductivité
matricielle.
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120 R. V. KOHN, B. D. LOWE

1. INTRODUCTION

This paper is concerned with the following parameter identification
problem: given measurements «m, / m , and gm of M*, ƒ*, and g*
corresponding to an elliptic équation on a two dimensional domain H,

-d iv (a*(*)Vu*) = ƒ* in HcIR2 (1.1)

a*(x) = # * on dfl, (1.1a)

r r
with the compatibility condition ƒ * c/x -h g* ds = 0, find the spatially

Jn Jan
varying conductivity a*{x).

Equation (1.1) corresponds to a steady state solution of

_ _ = — a* + — a* 1 + ƒ • (1-2)
dt dx \ dx / dy \ dy / J ^ J

This équation is important in hydrology, where it describes the flow of water
through an aquifer. Equation (1.2) is derived under the assumptions that the
flow is independent of depth and that the flow rate in porous rock is
proportional to the pressure gradient. The latter assumption is known as
Darcy's law. In équation (1.2), w* is the pressure or piezometric head and
a* is the transmissivity, the function of proportionality in Darcy's law which
measures the ability of the water to move in the aquifer. The quantity
ƒ * represents a source term. A detailed discussion of the various terms and
a dérivation of équation (1.2) can be found in Bear [4]. An important
inverse problem is to détermine the transmissivity a* under steady state
conditions by measuring w* and ƒ* at well sites.

In this paper, our attention is focused on w* in Hi(Cl) and ƒ* and
g* in L2(H) and L2(3H) respectively. The " measurement " um is an
approximation of w* in Hx (£!) ; in practice u* would be measured at well
sites, and um would be the piecewise linear interpolate of these measure-
ments on a triangulation of ü , with the well sites as the vertices of the
triangles. Because ƒ * represents a source term, an analysis of équation (1.1)
with ƒ* a delta function is also relevant. The reader is referred to
Alessandrini [2] for a study of that situation.

Equation (1.1) can be viewed as a first order partial differential équation
in the unknown conductivity a*(x). The équation is

Vw* . Va* + a* Au* = - ƒ * (1.3)

which can be solved by integrating along the lines of steepest ascent of
M*. Evidently, some assumption on Va* is required, as (1.3) becomes
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PARAMETER IDENTIFICATION 121

singular when Vu* = 0. If V«* should vanish on some open set, then (1.3)
provides no information about the behavior of a*{x) on this set. Although
this situation is possible when ƒ* ^ 0, Alessandrini [1] has shown that if
ƒ * = 0 and if w*|9n has a finite number of relative maxima and minima,
then Vu* vanishes only at a finite number of points in O, with finite
multiplicity.

If a*(x) is prescribed along that portion of the boundary where

< 0, the so-called inflow boundary, then Richter [20] proved that (1.3)

can be solved uniquely under the condition

infmax { | V « * | , A M * } > 0 . (1.4)
a

Evidently, the problem with which this paper deals is overdetermined, since
we assume the boundary data to be supplied along the entire boundary. In
practice the inflow boundary is not known, so our hypothesis is a reasonable
one.

Our goal is to design a numerical method which is easy to implement, and
which gives a reconstructed conductivity that has prédictive value when
" good " measurements are available. More precisely, the reconstructed
conductivity must give " good " approximations to the associated elliptic
forward problems. If ap is the reconstructed conductivity, assumed positive,
let

- V. (apVv) = - V, (a*Vw) in Q

v = w on 3H or an — = a * — on d£L.p dn dn

An intégration by parts against v - w gives

-v)\\L2^C\\ap-a*\\L2, (1.5)

where C = C ( inf a », Hw^ ) , and a* and 3O are assumed sufficiently

smooth so that || w || x ^ is finite. In view of (1.5), we shall think of a " good "
reconstructed conductivity as one that is close to Ö* in L2.

If the goal were an accurate reconstruction of a * in the L00 norm, then the
problem would be ill-posed. This is due to the smoothing property of elliptic
operators, on account of which rapid oscillations in the conductivity are
suppressed in the forward solution. The following one-dimensional example

demonstrates the phenomenon : let Ö*(X) = - , u*(x) = x2, and consider

aN(x) = (2 + cos iVx)"1, UN(X) = x2 + f TF ) s m Nx + ( —- ] cos Nx.

vol. 22, n° 1, 1988



122 R. V KOHN, B. D. LOWE

One vérifies that for every N

(«*(«*) ') '= («*(«*)')' on (O.ir)

(a*(u*)')(O) =

and T7-* 0, while
1= - for every N. More

sophisticated exaraples of a similar type can be found in Murat [17] and
Alessandrini [2].

If, on the other hand, the goal were an accurate reconstruction of
a* in the H~ 1 norm, then the problem would be well-posed. Indeed, one can
show (with some reasonable hypotheses) that if v solves

V. (a* Vw*) = V. {b Vu) in Vt (1.6)

dn on

then

| a * - & ! ! „ - , * c | | u * - i > |

where H l is the dual of H1(ü,). One proof of (1.6a) is as follows. Assume
that u* e C2(Ù) and j Vu* | =̂ 0 in Ö, Lemma 5 of section 3, which is based
on a theorem of da Veiga [8], shows that for each § e H^fL), there is a
*l> with

where C is independent of <(>. Using (1.6) and integrating by parts against
% gives

f ( a * - Z
Ja

Using (1.7), this gives

Jn

(1.8)

Since 4> was an arbitrary H1 function, this gives (1.6a). Unfortunately, a
good approximation in H~l of the coefficient doesn't have prédictive value.
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PARAMETER IDENTIFICATION 123

Our goal of estimating a* in L2 lies somewhere between the ill-posed and
well-posed problems just discussed. In particular, if a* is smooth and b is an
element of some finite element space, perhaps associated with a triangu-
lation of O of mesh h, then ||a* - b \\H ^ Ch~l\\a* - b \\L^ + O(h) by

standard finite element results. Choosing <(> = a* - b in (1.8) gives

Ha* - b \\L2^Ch-'\\u* - v ||Hi + O<7*2) . (1.9)

This inequality suggests that an algorithm producing a reconstructed
coefficient ap which lies in a finite element space should satisfy

at least if ƒm = ƒ*, gm = g*. In other words, errors of numerical approxi-
mation may amplify errors of measurement — a well-known phenomenon in
the numerical solution of ill-posed problems, see e.g. Natterer [18].

At least four methods have been proposed in the literature for the
solution of our parameter identification problem. As already noted, one
idea is to view (1.1) as a first order partial differential équation in
a*(x) and to integrate along characteristics [21]. Other methods include a
least-squares approach [10], the large time asymptotics of an associated
dynamical system [11], and a singular perturbation technique [1]. A more
detailed description of these approaches is given in the next section.

This paper develops a new, variational approach,_whiçh appears in some^
respects préférable to the existing ones. It is motivated by the simple
observation that for any positive weights y1 and y2,

f \<j-aVu^\2dx + y1 f | d i v a + f*\2dx +
Ja J a

[ .n-g*\2ds^0 (1.10)[
J an

for any choice of a{x) and any vector field er, the minimum being achieved
only when <J = ÖVW* with a(x) a solution of (1.1, 1.1a). Our method for
reconstructing the unknown coefficient involves minimizing (1.10) numeri-
cally over suitable finite-dimensional spaces of coefficients and vector fields,
using the measured data wm, fm, and gm in (1.10). The weights yx and
y2 are chosen so that each term of the sum has the same magnitude for the
choice a = a*,cr = (a* Vw* )l9 where af and (a* Vw*)z are the interpolâtes
of a* and a*Vw* respectively on the chosen spaces. This technique is
simüar to the method of équation error, see e.g. [19], but it takes advantage
of the structure of the underlying équation.

vol. 22, n° 1, 1988



124 R. V. KOHN, B. D. LOWE

Variations of (1.10) are possible. For example, one might consider using
a . n = gm and div a = - fm as constraints and minimizing \\a - a Vwm||^

or perhaps ||er — aVum\\2 + e | | « | | ^ for some small positive E. Other

possibilities include minimizing

1 f \a-
mcT-amVu*\2dx (1.10a)

2 Jn
with respect to a(x)^0 (by hand), then with respect to a satisfying
div a = — fm and a . n = gm (numerically). Minimization over a(x) leads to
the choice

which on substitution into (1.10a) gives the convex functional

( | a | |Vw* | - <<x, Vu*))dx. (1.12)
n

This modified approach will be useful in section 5, where we develop a
method for reconstructing a matrix conductivity.

Choosing finite element spaces of continuous, piecewise polynomial a's
and o-'s, (1.10) becomes a quadratic minimization problem in M9, for some
q. From a numerical standpoint, one could not hope for an easier
minimization problem. A wide variety of numerical methods are available,
including steepest descent, relaxation, and conjugate gradient.

The method proposed is a flexible one, by no means restricted to the
spécifie problem treated hère. For example, if N different solutions
u* (1 «s î =s iV ) of (1.1, 1.1a) are known, corresponding to different choices
ƒ/*% 9i*> w e easily make use of them ail by adding the N inequalities (1.10).
More generally, the method seems suited to situations where the équation
of state is the Euler-Lagrange équation of a convex variational problem.

We shall prove several stability theorems for the variational approach.
The arguments draw heavily upon ideas introduced by Falk [9] and
Alessandrini [1]. Let {A/J be a family of regular, quasi-uniform triangu-
lations of il, with each àh composed of triangles of diameter *s A < 1. Using
piecewise linear, bounded a's, piecewise linear cr's, and piecewise polyno-
mial wm, the following results will be proved for sufficiently smoôth
a* and w* :

(1) Assume condition (1.4), and let aph, crph minimize
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PARAMETER IDENTIFICATION 125

Then

(1.13)

In particular, if um is the piecewise quadratic interpolate of u* on
A/P fm = f*, and gm = g*, then

\\ap>k-a*\\L^Ch. (1.13a)

This is Theorem 1 (stated more fully in section 3). It is similar to Falk's
least-squares stability result ; however, Falk's argument required that
Vw* . T > 0 for some constant vector T, whereas Theorem 1 assumes only
the far weaker hypothesis (1.4). The second result uses a regularizing term
v || Va || ̂ 2 as part of the functional :

(2) Let aph, aph minimize

where v ~ (h2 + | |«* - « 1 ^ + A|| f* - / m | | ^ + hm\\g* -

Then

(1.14)

In particular, if um is the piecewise quadratic interpolate of u* on
^ , ƒ" = ƒ*, gm = 9*, and v = h\ then

I \a* - aPth\\Vu*\z dx^Ch .

This is Theorem 2 (see section 3). An analogous, weighted estimate for an
output least-squares method is given in [15].

If condition (1.4) is satisfied, then Theorem 2 is weaker than Theorem 1,
as Theorem 1 gives the same bound in Lv Note however that the two results
are based on minimization of slightly different functionals. If
|| um - W/*|| = O (E), where uf is the piecewise quadratic interpolate of

w* on Ah and e ^ 0 due to random measurement error, then both (1.13) and
(1.14) exhibit the zh~l behavior suggested by (1.9).

These two results give convergence only if | |M*-wm | |„ = O(ha) with

vol. 22, nQ 1, 1988



126 R. V. KOHN, B. D. LOWE

a > 1. Piecewise linear measurements um — the simplest case numerically
— are excluded, because they give \\u* — um\\H = O(h) in gênerai.

Ho we ver, a re suit that includes such um can be obtained by making a
different choice of the weights :

(3) Let ap^h, <rph minimize

where v ~ (h + | |M* - « « | | H i + \\f* -

Then

In particular, if um is the piecewise linear interpolate of u* on AA,
f m = f*^ g"> = g*, and v = h2, then

L
This is Theorem 3 (see section 3). If |Vw*| > 0, then using the a priori
L00 bound on aph, we have

Under certain conditions (see Theorem 4 in section 3), this inequality can
be improved to

Numerical implementation has shown the method to work even better
than predicted. A typical example is as follows. For H - (0, 1) x (0, 1), let
Ah be composed of triangles ( , ' ), ( — , ), ( — , ^- ) and

(l~W~' 1~ïfL')' (l~W~' N^9 ( ^ 7 ' A^ ) J ls£ï*' 7^iV' ft = ^' Take

a* = 1 + y2, w* = x + y + i (x3 + y3) and let wm, /m , and gm be the

piecewise linear interpolâtes of w*, ƒ*, and g* on AA. Minimization of the
functional

lia — aVum\\2
T + | | d i v a + fm\\2

t + h2\\Va\\2
T

II II £ 2 II J \\ l,^ '1 •' L2
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PARAMETER IDENTIFICATION 127

over piecewise linear a with a . n = gm on dO, and piecewise linear and
bounded a appears to give

where aph is the discrete solution. This is the observed behavior using
different N in the range 10 =s= N === 50. By contrast, the best estimate gives
\\aP,h - a* ||L ^ C/z1/2 — in fact, the observed convergence is even better

than that predicted by (1.13a) for the piecewise quadratic interpolate of
u * ! More extensive information on numerical tests will be found in
section 4.

Wexler and his coworkers [23, 24] recently and independently proposed a
similar variational technique for a different but reiated problem. Their work
does not, ho wever, include stability or convergence estimâtes.

2. REVIEW OF METHODS

In this section we discuss some of the methods that have been used for
solving our parameter identification problem.

A. Integrating along characteristics

It is natural to \dew (1.1) as a partial differential équation in a*(x) and to
integrate along lts characterïstics. As already mentioned, Richter [20]
proved that (1.3) can be solved uniquely under condition (1.4), if
a*(x) is prescribed along the inflow boundary. In a companion paper,
Richter [21] proposes a finite différence scheme for the solution of (1.3)
under condition (1.4). The method is developed on the unit square
(0, l ) x ( 0 , 1), with an easy extension to more gênerai domains in
R2. He chooses the uniform grid

<X> ïj) = (}h9 jh) , 0 ss i , ƒ ss re + 1 , h = ,

denoting by £lh the interior grid points and r j the discrete inflow boundary
(a boundary grid point is in r j if its nearest neighboring grid point in
€th has a larger value of w*). Equation (1.3) is discretized as

</ -<; <j-<j <j-<i <y-"«?f _
h ' h + h ' h +ai.JHUi.i- Ti,i

Hu* - Ul*+ h' + Ut*-l-j + u?'j + i + » * y - i ~ 4 uïi n u

vol. 22, n° 1, 1988



128 R V. KOHN, B. D LOWE

where k is the first index of the minimum of { u*_ ltJ, u*p u*+ 1 ; } and l is
the second index of the minimum of { u*}_l, u*J9 u*J + l } . Solving for
a*j gives

~

The reader will note that the scheme is explicit in the direction of
increasing u*r Hence, " the discrete solution is developed in a manner
consistent with the characteristics of the continuous problem, which are
curves of steepest ascent in M*. "

Richter showed that under condition (1.4), the discrete problem (2.1) has
a unique solution a*y assuming prescribed values on Ff. Moreover, if

w* and a* are sufficiently regular i n ü , M*e C3(Ö) and a* e C2(fl), then

max \a*j-a*(xl3y,)\ =0(h) as h -> 0
0== i,j ^ n + 1

assuming a*} = a*(xl9 y}) on Fj. Although this convergence theorem
requires more regularity than our stability results (see section 3), it gives
O(h) convergence under perfect nodal measurements. In contrast,
Theorem 1, with fm = f * and gm = g* gives O(h) convergence in
L2{£1) under piecewise quadratic interpolation of perfect nodal measure-
ments of u * on a triangulation Ah of mesh h. However, the situation where
approximate measurements are given was not addressed by Richter. We
note that the method involves approximation of second derivatives from
discrete data, a source of potential instability.

B. Output Least-Squares Minimization

A second approach is the output least-squares method. To our knowledge,
it was first applied to (1.1, lAa) by Frind & Pinder [10]. The least-squares
philosophy says that if u£ is the solution of (1.1, 1.1a) with the coefficient
a* replaced with b, then b is a good approximation of a* if the différence of
the forward solutions, w* — uj*9 is small in L2(ft). For practical purposes, a
finit e dimensional implementation of this idea is necessary.

The method begins with a triangulation àh of fl of mesh h. Given an
L2 measurement um of «*, select a finite dimensional class of coefficients
ah e Ah. To each coefficient ah, we associate a w0* e Vh, where «a* solves
(1.1, Lia) in a Galerkin approximation:

M2 AN Modélisation mathématique et Analyse numérique
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PARAMETER IDENTIFICATION 129

| ahVu?h.Vvdx= \ f*vdx+ \ g*vds
Ja Jn Jm

Jn Jn
ldx

where Vh is a finite dimensional space. To find an approximation of
a*, we select that ah e Ah which minimizes ||wfl* — um\\ over Ah. Versions

11 ff I I L 2

of this method have recently been studied by Kunisch and White [15, 16],
and (using regularization) Kravaris and Seinfeld [14].

As already noted, a stability resuit for this technique was given by Falk [9]
under the hypothesis that V u * . v > 0 for some constant vector v. If
Ah are continuous, piecewise polynomials of degree r on a triangulation
Â  with a =s ah =s P, and Vh are continuous, piecewise polynomials of degree
r + 1 on Ah, then Falk's theorem is

il i2 9

where «* - wm = min ||w* — wm||
M * IIL2 IIL

Our stability result is analogous, although we restrict our attention to
piecewise linear ah for numerical ease. In this case r ~ 1, and Falk's result
gives

Moreover, instead of a gênerai measurement wm of «* in L2, our
um is a piecewise polynomial interpolate of the measured u* at nodes. Our
attention was restricted to such um because this is what would normally be
used in applications. Now Theorem 1, with ƒm = ƒ*, and gm = g*, and
standard finite element results give

where aph is the reconstructed conductivity defined in Theorem 1. Hence,
the estimâtes are the same, although Theorem 1 holds under the more
gênerai condition

inf max {|Vw*|, Aw*} > 0 .
n

Although the variational method might appear more unstable than the least-
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130 R. V. KOHN, B. D. LOWE

squares method, as it requires differentiation of the measurement
um, the estimâtes give no such indication.

Output least-squares minimization is a commonly used method suited to
many parameter identification problems, see e.g. Chavent [5] and Banks
and Kunisch [3]. However, the above least-squares Galerkin method
appears computationally onerous. Calculating the gradient of
G(ah) = \\u* - um\\ requires solving an elliptic équation, and a steepest

II ft I I L 2

descent method would have to do this repeatedly. A further difficulty arises
from the potential nonconvexity of G, and the consequent danger of getting
trapped in a local minimum. Because the variational approach is based on
the minimization of a convex functional, it has no such difficulty.

C. Singular Perturbation

Alessandrini [1] proposed a singular perturbation technique to détermine
the spatially varying coefficient in the special case ƒ * = 0. He solves the
(stiff) elliptic problem

eAae + V. (aeVu*) = 0 in n
ae = a* on an ^ * J

with e :> 0 small, where it is now assumed that a* is known on the entire
boundary. Equation (2.2) is elliptic, and it can be written in divergence form
as

o in n ( 2 2 a )
u = eM*Afl* on dn

with v = e"*/* ae. Using a very elegant argument, Alessandrini showed that

L
He also proved a stability result with u* in (2.2) replaced with an
approximate measurement um. Since our Theorem 2 with perfect measure-
ments gives the estimate

L
(where aph is the reconstructed conductivity), his result is comparable to
ours when e = h2.
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D. Long-time behavior of an associated dynamical system

Hof f man and Sprekels [11] have proposed a new and ingenious technique
to reconstruct coefficients in elliptic équations. It is not based on a
minimization algorithm at all, but instead on the long time behavior of an
associated dynamical system. The spécifie équation they considered is

-V . (A*Vu*) = ƒ* (2.3)

where u * e H f. The algorithm seeks to détermine a matrix A * which solves
(2.3).

For fixed e > 0, they consider the dynamical system

Au(t)V. (A(0Vii(0) = ƒ*

À{t) = Vu(t) ® V ( M ( 0 - «*) (2.4)
M(0) = u°sHf , A(0) = A° e L°°(a) symmetrie

where u° and A° are arbitrary initial conditions. Clearly, (2.4) has (2.3) as a
steady state. Now, (2.4) has a unique solution (u(t),A(t)) for all t. They
show that w(rm)-^w* and A(tm) -+ A^ for some subsequence tm-+oo,
where A^ solves (2.3), under the hypothesis that (2.3) has a positive definite
solution A * ; the key tooi is the energy estimate

+
e»

||V«(
Jo

where C = C(w°,A°,A*). With (2.4) replaced with

- 6 A A U ( 0 - V . (A(f)Vu(O) = ƒ*

(eiv«(0+A(0V«(0) . " = </*

v(«(r) - M*)
M(0) = M°€fl1 , A(0)=A 0 eL°° ( f t ) symmetrie

the same techniques will give a matrix A^ satisfying

- V . ( ^ V w * ) = ƒ* in ft
A ^ V w * ^ = g* on aft.

vol. 22, n° 1, 1988



132 R. V. KOHN, B. D. LOWE

For the purpose of calculation, a finite dünensional analogue of this
technique must of course be used. Hof f man & Sprekels propose a
semidiscrete Galerkin method. Under the same assumptions as bef ore,
energy estimâtes analogous to the continuous version are proved. In this
case, the estimate is used to show that A^ = lim An(t) and A^ M Ï U ^ ,

t -* 00

where A^ solves (2.3), and An(t) is the n-dimensional Galerkin solution of
(2.4).

One problem with this method is that it gives a matrix coefficient, not a
scalar one. Moreover, one can specify the Dirichlet data or the Neumann
data, but not both simultaneously. In this context the solution of (2.3) is not
unique. The method of [11] presumably chooses a particular solution, but it
is not clear which one.

E. Further remarks

Our discussion has been limited to methods whose convergence has been
proved at least in some cases. A variety of other methods could be
considered —see for example the survey articles of Chavent [5], and Polis
& Goodson [19].

The variationai method is as good as (or better than) all of the methods
just discussed, as far as stability and convergence theorems are concerned.
Being a quadratic minimization problem, it is also extremely easy to
implement. The method's principal disadvantage is the large number of
variables it uses : if a and a are piecewise linear on a triangulation with
N2 nodes, then the fùnctional to be minimized dépends on 3N2 variables.

3. CONVERGENCE THEOREMS FOR THE VARIATIONAL METHOD

In this section, we prove stability results for several forms of the
variational method, under finite element approximation. Once again, the
underlying elliptic équation is

- V. ( Û * ( * ) V K * ) = ƒ* in HczIR2

(3-D
a*(x)— =g* on aft.

dn

It will be assumed that a*(x) is a scalar with a priori bounds 0
a=E=a*(;c)=ï3<oo. In addition, the following is assumed,

(i) u*e

(ii) Aa* e C°(ft)
(iii) a*eH2(n).
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Let { A / J , 0 < : / I < : 1 , bea family of regular, quasi-uniform triangulations
of O, a Lipschitz continuous domain. That is, for each triangle T G Ah,

hT A h
— sï a ana — =s v
P r hT

where hT = diameter of T^h, and pT = sup {diam (5 ) ; S is a bail
contained in T}. Should the boundary be curved, then we use boundary
triangles with one edge replaced by a segment of the boundary.

For a triangle Te Ah, we say

Ah if f n dQ,=£0 .

Let us define the spaces

= {w e C °(Ô) : w \ T is a polynomial of degree ^ A:, V T e A

We now give a précise statement of Theorem 1.

T H E O R E M I : Let um, fm, and gm be measurements of u*, ƒ*> and

g* corresponding to équation (3.1). Assume that um e Q^ for some fixed k

and \\u*-um\\Hi^z, | | / * - m ^ < M , ™d \\g* - 9m\\L2{m) - ^ Let

<jp h G Kh, aP) hsAkbe such that

J(<Jp,h>ap,h)= m i n / (o" ,a)
aeKh

aeAh

1 2 + ^2|ldiv a + fm\\2= min {| |a-aVw12 , + ^2|ldiv a + fm\\2
T

/ / in fmax { | V M * | , A M * } > 0, then
n

where C is independent o f h, E, \1S and X2. If um = ujffi, the piecewise
quadratic interpolate of u* on Ah, then
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Our proof will control the quantity \\apih — a*\\L by the magnitude of

J(<rPjh, aph). Hence although Theorem 1 is stated for minimizers of J, an
analogous result holds for any a e Kk, a e Ah which make J small enough.

Before proceeding with the proof of Theorem 1, some preliminary results
are necessary.

LEMMA 1 :

(la) If 4/ e Hx{n), then for any T e Ah,

where C is independent of h and T. Additionally,

(lb) If i|/| T is a polynomial of degree ̂  k on each T e Ak, then

where C is independent of h and T.

(lc) If $£) is the f-th degree interpolate of (j> on Ah, then for any

where C is independent of h and T.

For 4> = aph-a*,

and

Proof: Statements (la-c) are Standard results from the theory of finite
éléments ; they can be found in Ciarlet [7] for polygonal domains and Scott
[22] for domains with curved boundaries. Assertion (ld) is easily proved by
using (Ib, c) on each triangle, then adding and using (la).

At this point, we adopt the convention L2 = L2(O>) and Hç = H^(Ci). In
the following analysis, the constant C dénotes a generic constant.
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LEMMA 2 :

where C is independent of E, h, \x and \2-

Proof: Let cr£^ and fl^^ be the piecewise linear interpolâtes of
a* Vw* and a* on Ah. Now

and so

ViPp,H, "p,h))
in « | K ^ - <9] VMm||L + A ||div

Now

by(lc) ;

by (lc) ;
- n i L 2

and

- a

^ C {/i- 1/2(C/ï2) + hm(Ch)} + \2 by (lc)

^C{h3l2+k2} .

Consequently,

V(vp,i,,ap,h)y
a*C(h2+ e) + h(C(h + Xj)) + hV2(C (h™ + \2))

=sC(/z2+e + / I \ 1 + ft1/2\2).
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LEMMA 3 :

||div cr,,A + / m | | L 2 * h-\j(*Pih, aPih)f
2 ^ C (h + e / r 1 + \x + ̂ "1 / 2 X2)

II<T . M _ / 7 m l l ^•u-vZfTfn „ ^̂ l/2

This follows immediately from the définition of / ( a , a) and Lemma 2.

LEMMA 4 : Suppose infmax { | V W * | , A M * } => 0. Then there exist con-
n

stants \ > 0 and (x > 0 5wc^ tfiar | Vw* |2 + X Aw* s= jx on O.

Proof: The condition infmax { | V M * J , A W * } > 0 is equivalent to the
n

existence of n l 5 n 2 , fcl5 fc

a = Hi u n 2

| V M * | ^ fcj > 0 on Ü!

Aw* =̂ k2 >• 0 on O2 .

The lemma follows easily by choosing X sufficiently smalL
We now begin the proof of Theorem 1.
Let 4> = ap h - a*, v = $w where w = e~"*/\ X being defined by

Lemma 4. Calculation gives

, V Ï ; = < | > 2 V W * , V H > + 4>V<|> .W
Jn Ja

Using the identity $ V<{> = - V<})2, and integrating by parts,

f <|> V<(>. w Vu* = 1 f V<t>2 . w V u

This in turn gives

f f 9 . 1 f 9 , . x 1 f 2 9W*
<b Vw . Vf = d> Vw . Vw d> V . (w Vu ) H— à> w

Jn Jn Z)n 2 J3i i 3»
/* 1 r *\ *

= 5 <(>2(VM* . V>v - w A M * ) + - (j)2w-^— .
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Now Vw* . Vw - >v AM* = e "* / / x( | Vw*|2 + \ A w * ) , and so we have
A.

Jn
. Vt; = -

2 Jan dn

Lemma 4 gives

(min e""* /A ^ f <j>2 ̂  f <j>2 e - M * / x ( | Vw*|
\ n / Jn Jn

+ X

an
bn Ja

V u * . V u l ,J
from which it follows that

min e
n

4> Vu * . Vv

(3.2)

We shall now estimate the right hand side of (3.2).

Hence,

Now,

+ o-n

i.2(3ïi)
. (3.3)

(3.4)

by Lemma 3. Moreover,

p,n ~p,h llL2(3T)
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whence,

R. V. KOHN, B. D. LOWE

f
(3.5)

(3.6)

For uffî\ the piecewise quadratic interpolate of w* on Ah, using (16) and
(lc), one easily vérifies that

Using (la) and (lb), one easily vérifies that

\u* — i
\H2(T)

|
\H2(T)
l\Hi{T)

1

This, along with (la) gives

Combining (3.5), (3.6) and (3.7) gives

2 C

Using Lemma 3 gives

Combining this estimate with (3.3), (3.4) and (ld) gives

en
. (3.8)

We now estimate the term <J> Vu* . Vu in (3.2) :

= ƒ * u + 0*u— üpj
Ja Jen Ja
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using the variational form of équation (3.1). Adding and subtracting various
terms,

Vw*. Vu =

= [ (f*-fm)v+ f (/m + divap>ft)u- f (diva,,*)»
Jn Jn Jn

f f

Jaa Jaa
r r

-I- f n * _ a ) v — I â i
Jaa Ja

Vw* . Vu .

By Green's Theorem,

J 9a Ja Ja

and so

- f 4 > V « * . V » = f ( ƒ * _ ƒ " ) ! , + f ( / m + divaJ, ih)«
Ja Ja Jn

+ [ (gm-<rPih.n)v+ f ( ö * - g m ) « ;
J aa J aa

+ f (a^fc-fl /F>fcV«M).Vü+ f flp>hV(Mm-M*).Vi;.
Ja Ja

Therefore

<t> V w * . V u

whence using

Vw* . Vu || Vu |

where

= i l / * - ƒ-

1 L2(aa)

(3.9)

(3.9a)
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and

ei- K . - ^ V n X + p ll«*-«mHffl

Lemma 3 gives

Since v = $w, we have

using (ld) in the latter step. It follows that

C(h + eA"1 + X1 +/Ï~1 / 2X2)( | |C() | |L 2 + ^ 2 ) . (3.11)

Combining (3.2), (3.8) and (3.11) gives

4> Vu * • Vv
a

whence

Wh - ** IIL2 * C {h + sh-1 + xx + /r1 / 2 \2} ,

the principal assertion of the theorem. If um = uffi, then ||w* - wm||ff

Ch2 by (lc), and so

The proof of Theorem 1 is now complete.
When Vw* vanishes in fl, the uniqueness of the coefficient comes into

doubt (although the recent results of Chicone and Gerlach apply in some
cases [6]). Nevertheless, even ifVu* vanishes on a set of positive measure, it
is still possible to get stability where | Vu* | =^0. The best result is obtained
by including a regularizing term v ||Va||£ as part of the functional. The

proof of the following result is strongly motivated by the work of
Alessandrini [1].
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THEOREM 2 : Let um, fm, and gm be as in Theorem 1, with

Kk9 aph e Ah be such that

J(vPih>aPih) = min J(<r,a)
*eKh

aeAh

= min\\\<T-aS7um\\2
T + h2 lldiv a + fm\\2

T

where v - (/̂ 2 + £ + /^i + hmk2f. Then

Ja

where C is independent of e, h, \x and K2. If um = uffî\ the piecewise
quadratic interpolate of u* on Ah, then

f |a /F iA-fl*||V«*|
Ja

Proof: Because v ~ (h2 + s + h\x + hm \2)
2, the bound

'(°>,fc, ^ ^ ) 1 / 2 ^ C (^2 + s + fc\! + hm\2) (3.12)

still holds. In addition, we have

I I V ^ H ^ C . (3.13)

By the same argument as used in Theorem 1, (3.9, 9a, 9b) leads to

Ja
<!>Vu*. Vu

(3.14)

for all v e Hlf where <J> = aPth - a*.
We shall rewrite the left side of (3.14) as a sum of several terms. First, we

approximate <f> by a séquence of smooth functions tyr G C°°(n) with

K-4»ll f f i (o )-0 as r^oo. (3.15)
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Next, for 8 :> 0 and r fixed, we consider

where tyf = max {\\tn 0} , \|ir
+ A 6 = min {i|>+ , 8}. Since

conséquence of (3.13) and (3.15), we have

We claim that

f i|»r \Vu>

Ja

(3.16)

C as a

(3.17)

(3.18a)

(3.18b)

ït will be enough to prove (3.18a), since the proof of (3.18b) is parallel in
every respect. The définitions (3.16) give

f f * 2
J n J i\tr s* 5

r 2 * 2 ~i f
J 0 «= ijj <= S J 0 <c v|/r < 8

The second term on the right satisfies

S"1 f i|i2 |Vw* | 2 ^C8 . (3.19)

In estimât ing the third term, we shall suppose (without loss of generality)
that 0 and 8 are regular values of tyr Then

Vw* =
0 <: (|/r -c 8 0 < \ | i r <: 8

tf^ÇÏ- f ^ A ( M. (3.20)

Let us estimate the boundary term : we have 3 {0 < ^r < 8} = 1̂  U T2 U
F3, where

rx = {*\fr - 0} n n , r 2 = {i|ir = 8} n n , r 3 = {o ^ ^ r ^ 8} n da.
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Clearly

As for r2,

na dn

naa

whence

C o 2 ,

using that 3(w*)2/3n is bounded on 6ft. Similarly,

s CÔ 2 .

The interior term in (3,20) is easy to estimate :

J 0 < tyr < S

Combining these results with (3.20) gives

J 0 < »|ir <= 6

which together with (3.19) establishes (3.18a).
Assembling (3,18a) and (3.186) with the obvious result

f
J I <pr

we conclude that

r\

I <pr I -= s

Ô+

143

(3.21)

. Vv

The same follows with tyr replaced by 4> = ap h — a*, by passage to the limit
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r-»oo. Applying (3.14) with v — vx and v = v2, and using (3.17), we
conclude that

{

The best choice for 8 is ô - h ; it gives

\ap h -

a

the principal assertion of the theorem. If um = uffi\ then e ~ h2 and so

f l« * - * ' l | v « <
Ja P'

This concludes the proof of Theorem 2.
We note with regard to Theorem 2 that the constant C doesn't contain

exponentials. Also, if w* and a* are sufficiently regular, the proof we have
given works in any space dimension. Finally, it was not essential that
um e Q^ for some k : in fact, the result holds for arbitrary um e

As already noted, these two theorems give convergence only if
|| «* - um\\H = O(ha) with a > 1. In applications, w* is measured at well

sites and um is most easily taken as the piecewise linear interpolate of the
measured w*. A convergence result for piecewise linear um is obtained by
making a different choice of weights in the functional :

THEOREM 3 : Let umeQJl
1\ /m , gm be as in Theorem 1 with

Kh, aph e Ah be such that
J(vp,h>ap,h) = min J(<T,a)

aeAh

= min{||a-aVwm||2 + ||div a + fm\\]

v ~ (e '+ h + \y + h~ m \2f. Then

f \ap,h- a*\\Vu*\2 **C {hm + zh-m + h~112^ +h~1\2}
J ft
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where C is independent of hy e, \x and X2. If u
m = uffi\ then

J Q
K * a*

Proof: Proceeding as in Lemma 2, it is easily verified that
(vph,aph))m^C{e + h + kx + h-m\2} and WVa^W^C. With

vt (i = 1, 2) chosen as in Theorem 2, the method of Theorem 2 gives

K , * - « * l | V u * | 2 ^ C { ô + (e + Zi + Xj +/i"1/2X2)(l + Ô"1)} .

Choosing the optimal h^hm gives

1

LJü

If um = uffi\ then e - A and

This concludes the proof of Theorem 3.
As in Theorem 2, it was not essential that um e Q^\ All that is necessary

is that ume H^ft).
In contrast to Falk's argument in [9], the proof of Theorem 1 does not

involve the solution of a hyperbolic équation. However, we can do a little
better than Theorem 3 if u * satisfies the following condition :

For all i|/ G HX (ft), the équation Vu * . Vv ̂  = \\t

has a solution with \\v^\\H ^ C \\ty||Hi . (3*22)

If this condition holds (see Lemma 5), then estimate (3.9, 9a, 9b), with
v ~ Vty gives an estimate on \\ap h - a* || i (H'1 = dual of Hx). Indeed,

1 Co

where the constants c0 and ct are given by (3.9a) and (3.9b) respectively.
Hence,

IJ.JÙ
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and so
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U s i n g t h e i n e q u a l i t y \\aPth - a* \\^ ^ C \\aPyh - a*\\™i \\aPyh - a* | | ]£ , w e

have :

THEO REM 4 : Let um, fm, and gm be measurements of u*, ƒ*, and
g* with | | u * - « 1 f f i < e , \\f*-r\\Li^^ and \\g* - gm

Let ap^h e Kh, ap,h e Ah be such that

H<rp,h><*pth)= m n \\\cr-aVum\\2
L + ||div a + fm\\2

L
a e Kh

 l 2 2

a e Ah

where v ~~ (E + h + X1 + h~m X2)
2- Tften /ƒ condition (3.22) is satisfied,

\\aPth-a*\\L2^C(s + h + \1+h-ll2k2y
12. (3.23a)

/ƒ r =

*. «,,*)= min
o- e /<Cftj ae Ah

v.n = ff^pon 311

2 +||div a + H l 2 +v || V a f l
2 l }

(3.236)

then

Proof: Proceeding as in Lemma 2, it is easily verified that

co^C(e + /i + \ 1 + / i-1 / 2 \2) , q ^ C ( e + h + Xj + /i"1/2 X2)

for the first functional and c o ^ C ( s + / z ) , c 1=^C(e+/ î ) for the second
functional. In each case, | |V^ iA | | === C. Hence,
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which gives (3,23a) and (3.236). If um = uffi in the second functional
J(a, a), then e ~ h and \\aPth - a* \\L =£ Chm, concluding the proof.

We note that if ||«* - um\\H = O(ha), X1 = 0 and X2 = 0, then

Theorem 3 guarantees aph^>a* if a > - , while Theorem 4 guarantees
a

P, h -* a * if a > 0. Hence, Theorem 4 gives better stability than Theorem 3.
We close this section with a proof of (3.22) for a reasonably large class of

M * .

LEMMA 5 : Suppose u* e C2(Ù) and |Vw*| =^0 on ÎÏ. 77ierc /or eacn
\ff e H1(Cl), there exists a v^ e H1(Ci) satisfying

Vw*. Vü̂  = i|/ in ft (3.24)

and the estimate

ll»*llHl*C||*||ffi, (3.24a)

where the constant C is independent of i|/.

Proof: Theorem 4.1 of [8] shows that for £ e C\€i) and \ sufficiently
large, the équation

\w + É . Vw = <|> (3.25)

has a solution w e H^iï) for each <$> e i f^ft) , with

. (3.25a)

The constant C dépends on £ and \ , but not on 4>. (The solution w is of
course not unique, since no boundary condition has been specified.
Although the statement of the result in [8] assumes that 3ft is C \ the proof
also works for Lipschitz domains.)

Our équation (3.24) is transformed into one of the form (3.25) by the
substitution

This gives

ex"*(Vw* . Vw + \ | V u * | 2 w ) = Vw

so (3.24) holds if and only if

Vu *

\ w + u W ( - x 7| V M * | 2
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If w solves this équation and satisfies (3.25a), then v^ is easily seen to satisfy
(3.24a).

4. NUMERICAL PERFORMANCE OF THE VARIATIONAL METHOD

This section discusses the performance of the variational method on some
spécifie examples. We consider the unit square £1 = (0, 1 ) x (0 ,1) , and the

triangulation &N composed of triangles f , ^ j , f — , ^ ~ J,

- £ ) - * £
. We choose to minimize the functional

JN(v,a) = \\<j-aVum\\2
L2+ ||div er + f

where a has continuous, piecewise linear components on AN, and a is
continuous and piecewise linear on àN with a priori bounds a =s= a =s= p.
Furthermore, a is constrained by a « n\dü = #m, where the measurements
wm, / m , and #m are continuous and piecewise linear. The numerical
minimum, <rN, aN of JN, was computed by a relaxation method, iteratively
minimizing over a, a at successive nodes while keeping the value at all other
nodes fixed. This algorithm was chosen for its simplicity ; probably the
conjugate gradient method would be faster for very fine triangulations. Our
goal was to evaluate how well the numerically reconstructed coefficient
aN approximates the true coefficient a* in practice.

We present two examples with " perfect measurements ", i.e. in which
um = u*, fm = f *, and gm = g* at nodal points. Each used a* = 1 + y2,
ƒ* = _ v . (a* V M * ) , o* = a* ^— . The (t solution " w* was

9/T

u* = x + y + - (x3 + y3) in Example 1 ,

( 1 \ 2 / 1 \2
X~2) + \ y ~ 2 ) i n E x a m p l e 2 •

and

In particular, | VM * | ^ 0 in Example 1, whereas | Vu * | = 0 at a single point
in Example 2 (but the condition infmax {|Vw*|,Au*} > 0 is satisfied).

a
The numerical minimum <JN, aN of JN was determined for values of N
between 10 and 50. The upper and lower bounds on aN, a = 0.1 and
P = 4.0, were ne ver active at the solution. The convergence of
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Il <jN - aN Vwm|| is graphed in figures 1

and 2.
Not surprisingly, the variational method performed better when

|Vw*| ^ 0. Indeed, the observed convergence was \\aN — #* | |L ~

I, ^O(N~l) in Example 2.O (TV"16) in Example 1, but only \\aN - a*

Moreover, in Example 2, different behavior was observed for even and odd
TV, the results being better when N is odd. This is presumably due to the f act
that V«* vanishes at a node when TV is even. In both of these examples, the
observed convergence is better than we are able to prove theoretically : our
best convergence estimate, Theorem 4, establishes that

O(N~m).
We observe with respect to Example 1 that \\vN - aN Vwm|| - O(N"X)

L

and ||div aN + f In the proof of Theorem 4, the term
aN ~ a* | | \ ïs bounded in terms of ||<JN — a^ Vwm|j and || div <rN + ƒn

I L2 || iv • ^ || L i

and other O (TV"1) expressions. Thus Theorem 4 was doomed to give less
than optimal results, as we bounded the rapidly converging \\aN — a* ||^ in

terms of O (TV"1) expressions.

-8

Figure 1. — Convergence results for Example 1.
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Figure 2. — Convergence results for Ëxample 2.
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Of course, one wants aN to be close to a* even m the pointwise sense In

the example considérée!, this is true except for a layer near the outflow

boundanes (1 e du*/dn > 0) and (in Example 2) a neighborhood of where

| V M * | = 0 , see tables 1 and 2

TABLE 1

Nodal values of aN — a* in Example 1 with N = 10

071 050 050 052 052 051 050 048 044 039 051

- 032 - 012 - 012 - 011 - 011 - 011 - 011 - 011 - 010 - 027 036

- 002 003 006 006 004 003 003 001 003 - 008 035

000 - 001 - 002 - 002 - 009 001 - 008 034

001 000 - 001 - 005 - 001 002 - 008 032

000 - 001 - 004 - 001 - 001 002 - 008 030

000 - 003 - 001 000 - 001 002 - 008 028

001 - 001 - 001 - 001 000 - 001 002 - 008 026

001 - 002 - 001 - 001 000 - 001 002 - 008 025

000 000 000 000 - 001 001 - 007 024

001 - 002 - 001 - 001 - 001 - 001 - 001 - 003 002 - 015 035

TABLE 2

Nodal values of aN - a* in Example 2, with N = 10

194 038 106 110 131 138 135 120 100 082 110

018 - 046 - 034 - 049 - 055 - 058 - 054 - 045 - 032 - 060 077

077 - 029 006 - 005 - 002 - 003 - 002 - 004 000 - 031 087

069 - 043 - 012 - 034 - 044 - 049 - 036 - 039 - 009 - 038 094

080 - 044 - 012 - 045 - 097 - 173 - 089 - 038 - 006 - 042 093

081 - 044 - 016 - 054 - 187 - 690 - 170 - 045 - 008 - 042 084

076 050 - 015 - 043 - 092 - 170 - 087 - 038 - 006 - 037 069

066 - 032 - 015 - 036 - 035 - 046 - 037 - 026 - 007 - 031 050

053 - 024 - 009 - 010 - 011 - 011 - 008 - 008 002 - 020 045

041 - 036 - 020 - 028 - 032 - 034 - 032 - 028 - 018 - 026 009

052 040 048 057 064 066 063 053 053 019 097
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We also did a series of tests to evaluate how measurement error
influences the performance of the method. For this purpose, we used
" measurements " uf = u$ty + 2ev, where u$ty is the piecewise linear
interpolate of w* on AN, and v is a piecewise linear function on
AN, whose nodal values are independent random variables, uniformly
distributed between 0 and 1. The parameter e controls the size of the
" measurement error ".

Figure 3 shows the results obtained for various choices of e, with
N = 15 and 0.02 === EN =s 0.3, using the same u* and a* as in Example 1.
Examination of the graph shows that

within this range.

Il fljv — ö * II is roughly linear in e

-5 -

£n(eN) (N « 15)

Figure 3. — The effect of measurement error in Example 1.

5. A VARIATIONAL
CONDUCTIVITIES

RECONSTRUCTION ALGORITHM FOR MATRIX

This section présents a technique for the reconstruction of a matrix
conductivity A * (x), where > i*(x) i sa2x2 positive definite matrix. It is the
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analogue of the variant of our scalar method, described in the introduction,
in which the functional

l [ - dx (5.1)

is minimized over coefficients a(x) ^ 0 (by hand), then over vector fields CT
subject to div a = — ƒ*, <r. n = g* (numerically). The advantage of this
version over others is that the minimization over coefficients is relatively
easy. Moreover, the functional that émerges is convex even in the matrix
case. A similar minimization problem arises in [13], as the relaxation of a
method for finding a scalar conductivity by impédance computed tomog-
raphy. Numerical or theoretical convergence results are not established in
the matrix case ; these remain directions for further study.

A single boundary-value problem

- V . (A*(x)Vu*) = ƒ* in n (52)

A*(x)Vu* .n =g* on bil K ' }

obviously does not suffice to specify a matrix conductivity A* uniquely.
Therefore we shall suppose that measurements have been made on several
boundary value problems, say JV of them. The state équation is thus
generalized from (5.2) to

-V.(A*(x)VUi*) = f? in O ( 1 ^ . ^ N ) ( 5 3 )

The analogue of (5.1) for the matrix case with N measurements is

where div a( = - /f* and a(- . n = gj* (1 =s / ^ TV ). Expanding
\A-y2<ii -All2Vuj*\2, and noting that

f f f
(cTj, Vwt*) dx = - (div er;) M̂ * djc + (cr^^u^ds

Ja Jn J dü
f .* ut* dx + gt* ut* ds ,

Ja Jan
we have

' = ] (Jn (5.4)

Ja

vol. 22, n" 1, 1988
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We seek to minimize (5.4) over all matrices A > 0 explicitly ; this will
leave a new functional E(a1, ..., aN), the analogue of (1.12), to be

f f
minimized numerically. Because the term ƒ * u * dx + g* u* ds is a

Ja Jdo.
known and fixed quantity, we focus our attention on the rest, which will be
denoted by J1 :

Jl(*1,..,<rN,A) = £ {Jn5 (<X~ lCT"a>> + <^V«*,Vw*>)£teJ. (5.5)

A s a f i r s t s t e p w e r e w r i t e ( 5 . 5 ) i n t e r m s o f t h e 2 x 2 n o n n e g a t i v e m a t r i c e s

L = £ (Vu*) <yu,*)T and K = K^ ,„„ = £ a, af .
1 = 1 1 = 1

It is easy to see that

£ (A- 1 ^ , a,) = tr (A"1^) and £ <̂4 Vu*, VM*> = tr
i i i = i

so that

z Ja
(5.6)

Since A(x) is unconstrained (except for being a positive, symmetrie
matrix), the minimization over it can be done pointwise. The answer is
provided by the following lemma :

L E M M A 5.1 : IfK and L are non négative, symmetrie, 2 x 2 matrices} then

inf [tr (A~lK) + tr (AL)] = 2[tr (KL) + 2 (de t KL)1/2]m , (5.7)

the minimization in (5.7) being over all positive, 2 x 2 symmetrie matrices A.

Proof: We consider first the case in which K and L are both positive.
Then

tr ( A ^ i O + tr (AL) -• oo

if any eigenvalue of A tends to 0 or oo. Therefore the infimum in (5.7) is
achieved, say at Ao. Taking the first variation leads to

tr (bA(L-Aö1KAö1)) - 0

for all variations SA, and therefore

A0LA0 = K. (5.8)
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It follows that

(Aö Lf = KL and (Af1 K)2 = LK . (5.9)

The formula

trC - [tr (C2) + 2(detC)]1/2

holds for any 2 x 2 matrix C with positive trace. Using it, (5.9) yields

tr (Ao L) + tr (AQ 1 K) = 2[tr (XL) + 2(det KL)m]m ,

verifying (5.7) in this case.
If K or L is singular, we argue by continuity. The desired formula (5.7) is

known to hold when K and L are replaced by

for any E :> 0. Moreover, the right hand side is continuous in e as
E -• 0. Therefore we need only show that the left side,

g(e)= inf [tr (ALe) + tr (A~l Ke)]

is continuous as e -> 0+ . Since Ke^ K, Ls~z L, it is clear that

flf(e)ss£(0) for all 8 > 0 .

On the other hand, to any positive matrix A with eigenvalues ax,
a2, we associate the matrix Az with the same eigenvectors, and eigenvalues

if a ,>6- 1 / 2

if a^e1

at otherwise .

a/2 ; f a < ei/2

Evidently

so that

tr (Ae Le) - tr (AL) = tr ((AE-A)L) + tr (Az{Lt - L))

^ 2 81/2(tr L) + 2e (tr A J ^ 2 81/2(tr L + 2)

and

tr (A^KJ-tr (A"1 K) = tr ((A"1 - A"1) X) + tr (A^^K.-K))

^ 2 e1/2(tr X) + 2 e (tr A~l) ^ 2 81/2(tr K + 2) .
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Therefore

ff(e)*£tr (^ELg) + tr (A~lKB) ^tr (AL)+tr (A~lK) +

with C = 2 (tr K 4- tr L + 4 ). Minimizing over all ̂ 4 > 0 gives

This establishes the continuity of g, completing the proof.
We return to the problem of minimizing J or (equivalently) Jv By Lemma

5.1 and (5.6),

inf Jx (al5 ..., <JN, A ) = f [tr KL + 2 (det KL )mf2 dx ,

in which K = K^ CTAr is a fonction of the test fields {CTJ . Our proposai for
finding a matrix conductivity is to minimize this functional, or (putting back
the boundary terms)

E(* 9...9*N)= f [tr/CL + 2(detiCL)1/2]1/2- J (*l9Vu*
Jft 1 =1

It is evident from the preceding that E =* 0, and £ = 0 only if <jt = Ao Vu*,
where Ao is the (unique, nonnegative, symmetrie) solution of (5.3). If
erf, . . . ,CF^ are the computed minimizers of E in some finite element
approximation, then the predicted conductivity is the solution Ap of

ApLAp =

The minimum of a family of convex functions is not in gênerai convex.
Therefore it was a pleasant surprise to discover that, as in the scalar case
(1.12), the functional E(d1, ...,<JN) is convex :

P R O P O S I T I O N 5 . 2 : Let L be a nonnegative, symmetrie, 2 x 2 matrix. For
N

(au ..., aN) e (M2)N, let K = £ o-, aj. Then the map
1 = 1

(ŒJ, . . . , a w ) . - > [tr

is a convex function from (U2)N to IR.

Proof: We generalize an argument of [12]. An elementary calculation
gives

de tK= £ [det ( a ( , a ; ) ] 2 .

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



PARAMETER IDENTIFICATION 157

For a = {al}} with

define

Then

Qa = tr (KL) + 2 ( £ o lw det (a„ <r,)\ (det L)1/2 .

x„<x,)]2)1/2(detL)1/2Qa ^ tr (XL) - 2 ( £ a?i;

= tr (KL) -2(det KL)1

Thus ö a is a nonnegative quadratic form on (R2)N . It follows that
öa is a s u m °f squares of linear functions, and hence that Qln is convex in
(<*! vN). Now

[tr KL+ 2 (det # L ) m ]m = sup g

is the supremum of convex functions, so it, too, is convex.
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