Applications numériques de la dualité en mécanique hamiltonienne
ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 3, pp. 487-520.
@article{M2AN_1987__21_3_487_0,
     author = {Mathlouthi, Salem},
     title = {Applications num\'eriques de la dualit\'e en m\'ecanique hamiltonienne},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {487--520},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {21},
     number = {3},
     year = {1987},
     mrnumber = {908242},
     zbl = {0624.70015},
     language = {fr},
     url = {http://www.numdam.org/item/M2AN_1987__21_3_487_0/}
}
TY  - JOUR
AU  - Mathlouthi, Salem
TI  - Applications numériques de la dualité en mécanique hamiltonienne
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1987
SP  - 487
EP  - 520
VL  - 21
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1987__21_3_487_0/
LA  - fr
ID  - M2AN_1987__21_3_487_0
ER  - 
%0 Journal Article
%A Mathlouthi, Salem
%T Applications numériques de la dualité en mécanique hamiltonienne
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1987
%P 487-520
%V 21
%N 3
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1987__21_3_487_0/
%G fr
%F M2AN_1987__21_3_487_0
Mathlouthi, Salem. Applications numériques de la dualité en mécanique hamiltonienne. ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 3, pp. 487-520. http://www.numdam.org/item/M2AN_1987__21_3_487_0/

[1] A. Ambrosetti and G. Mancini, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories. J. Diff. équation (43) (1981), pp. 1-6. | Zbl

[2] A. Ambrosetti and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian Systems, Math. Ann. 255 (1981) | MR | Zbl

[3] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Willey, New York (1984). | MR | Zbl

[4] F. Clarke and I. Ekeland, Hamiltonian trajectories having prescribed minimal period. Comm. Pure App. Math., t. 33, 1980, pp. 103-116. | MR | Zbl

[5] F. Clarke and I. Ekeland, Nonlinear oscillation and boundary value problem for Hamiltonian system, Archive Rat. Mech. An. | Zbl

[6] I. Ekeland and J. M. Lasry, On the number of periodic trajectories for a Hamiltonian flew on a convex energy surface, Ann. Math. 112 (1980), pp. 283-319. | MR | Zbl

[7] I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod-Gauthier-Villars, Paris, 1972. | MR | Zbl

[8] M. Hénon, Numerical exploration of Hamiltonian systems. North-Holland Publishing company, 1983. | MR | Zbl

[9] M. Hénon and C. Heiles, (1964) Astron. J. 69, 73. | MR

[10] M. Levi, Stability of linear Hamiltonian Systems with periodic coefficients. Research Report. IBM Thomas J. W.R.C. (1977).

[11] M. Minoux, Programmation mathématique, théorie et algorithmes. Tome 1, Dunod (1983) Paris. | MR | Zbl