@article{M2AN_1987__21_1_63_0, author = {Hlav\'a\v{c}ek, I.}, title = {Shape optimization in two-dimensional elasticity by the dual finite element method}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {63--92}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {21}, number = {1}, year = {1987}, mrnumber = {882687}, zbl = {0611.73021}, language = {en}, url = {http://www.numdam.org/item/M2AN_1987__21_1_63_0/} }
TY - JOUR AU - Hlaváček, I. TI - Shape optimization in two-dimensional elasticity by the dual finite element method JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1987 SP - 63 EP - 92 VL - 21 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1987__21_1_63_0/ LA - en ID - M2AN_1987__21_1_63_0 ER -
%0 Journal Article %A Hlaváček, I. %T Shape optimization in two-dimensional elasticity by the dual finite element method %J ESAIM: Modélisation mathématique et analyse numérique %D 1987 %P 63-92 %V 21 %N 1 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1987__21_1_63_0/ %G en %F M2AN_1987__21_1_63_0
Hlaváček, I. Shape optimization in two-dimensional elasticity by the dual finite element method. ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 1, pp. 63-92. http://www.numdam.org/item/M2AN_1987__21_1_63_0/
[1] Approximations of elliptic boundary value problems. J. Wiley-Interscience, New York, 1972. | MR | Zbl
,[2] Problems and methods of optimal structural design. PlenumN. V. BANICHUK, Problems and me Press, New York and London, 1983. | MR | Zbl
,[3] Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Appl. Math. & Optim. 2 (1975), 130-169. | MR | Zbl
, ,[4] Convergence of an equilibrium finite element model for plane elastostatics. Apl. Mat.24 (1979), 427-456. | MR | Zbl
,[5] Dual finite element analysis for some elliptic variational equations and inequalities. Acta Applicandae Math. 1 (1983), 121-150. | MR | Zbl
,[6] Optimization of the domain in elliptic problems by the dual finite element method. Api.Mat.30 (1985), 50-72. | MR | Zbl
:[7] Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. Appl. 86 (1982), 99-122. | MR | Zbl
, ,[8] The approximation of the optimal shape control problem governed by a variational inequality with flux cost functional. To appear in Proc. | MR
, ,[9] On the existence of optimal shapes in contact problems, Numer. Funct. Anal, and Optimiz. 7 (1984), 107-124. | MR | Zbl
, ,[10] On optimal shape design of an elastic body on a rigid foundation. To appear in Proc. of the MAFELAP Confe-rence 1984. | MR | Zbl
, , ,[11] Mathematical theory of elastic and elasto-plastic bodies.Elsevier, Amsterdam 1981. | MR | Zbl
, ,[12] An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Internat. J. Solids Structures 4 (1968), 857-873. | Zbl
, ,