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INCOMPRESSIBLE LIMIT BEHAVIOUR OF SLIGHTLY
COMPRESSIBLE NONLINEAR ELASTIC MATERIALS (*)

p a r H . L E D R E T (l)

Communicated by P. G. CIARLET

Abstract — This paper deals with the convergence of the déformations and stresses of slightly
compressible elastic bodies to the incompressible ones as the compressibility goes to zero. The result
concerning déformations is a very gênerai convergence result stated in the context of J. BaWs poly-
convex stored energy functions. The convergence of the stresses in obtained fïrst formally through
an assumption of existence ofan asymptotic expansion for the déformation, This asymptotic expansion
is then proved to exist in a special case.

Resumé. — On s'intéresse à la convergence quand la compressibilité tend vers zéro des défor-
mations et contraintes d'un corps élastique peu compressible vers les quantités correspondantes
incompressibles. On montre dans le cadre général des densités d'énergie polyconvexes introduites
par J. Bail, la convergence des déformations. Pour les contraintes, on donne d'abord un résultat
formel reposant sur une hypothèse d'existence d'un développement asymptotique pour la défor-
mation. On montre enfin Vexistence de ce développement dans un cas particulier.

0. INTRODUCTION

The materials of the physical world are ail more or less compressible.
Nevertheless, for certain materials which are usually almost incompressible,
such as rubbers, incompressible elasticity is commonly used with good nume-
rical results, see Le Tallec [9], The situation is somewhat surprising, since the
équations of compressible elasticity and the équations of incompressible
elasticity appear to be very different at first sight Therefore, the problem of
justifying incompressible elasticity by some limit process is posed, cf. Truesdell,
Noll [15], p. 122. In the case of linear elasticity, the problem is solved by Lions
[10], see also Geymonat, Sanchez Palencia [7], Pelissier [13]. In the nonlinear
case, we can mention Ebin [6] for the motion of a slightly compressible fluid.

(*) Received in January 1985, revised in July 1985.
(*) Université Pierre et Marie Curie, Laboratoire d'Analyse Numérique (LA 189), Tour 55-65,

4, place Jussieu, 75252 Paris Cedex 05.
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316 H. LE DRET

For a related approximation of the incompressible Navier-Stokes équations,
see Témam [15].

We shall be concerned with the behaviour of equilibrium déformations
of slightly compressible bodies as the compressibility goes to zero, and the
corresponding behaviour of the stresses. The paper is divided in three parts.
Part A is devoted to a very gênerai convergence resuit of compressible solu-
tions to incompressible ones. Part B deals with the formai behaviour of the
stress via the assumption of the existence of an asymptotic expansion for
the solution. In Part C, we partly justify this assumption by showing the
existence of such an asymptotic expansion in a special case.

Our analysis in Part A rests mainly on J. Ball's existence and weak conti-
nuity results [2]. We penalize a polyconvex coercive incompressible stored
energy function in a way first introduced by Ogden [12]. That is, with standard
notations :

WZ(F) = W(F) + - *(det F).
o

Then the coercivity and the weak continuity of null Lagrangians, see Ball-
Currie-Olver [3], allow us to prove the weak convergence in a Sobolev space
FFlsY(Q)3 of compressible energy minimizers to incompressible energy mini-
mizers.

Tn the case of Ogden's materials, we show that the convergence is actually
strong in W1>y(Q). For related results and an extensive numerical study,
see Pouyot [14]. For a gênerai strictly polyconvex material, strong convergence
also holds. We only indicate how to prove this by using the same ideas as in
Ball-Marsden [4],

In part B, we assume that the solutions <|>e belong to W2>P(Q)3 for somep > 3
and that they satisfy strongly the equilibrium équations. The formai assump-
tion is that there exists an asymptotic expansion :

4>e = 4>o + # i + oOO in W2>?(Q)3 .

Then, we show that <[>0 is necessarily an incompressible déformation satis-
fying the equilibrium équation of the limit incompressible problem. Moreo-
ver, the hydrostatic pressure p0 thus associated to 4>Oî see Le Dret [8], is equal
to one third of the limit of the trace of the Cauchy stress tensor corresponding
to 4>g. Therefore, the good behaviour of the incompressible model is established
for the stresses, at least formally.

Finally, in part C, we show the existence of such an asymptotic expansion
in the special case of the pure displacement problem, with small enough body
forces, under suitable ellipticity assumptions on the incompressible Piola-
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SLIGHTLY COMPRESSIBLE NONLINEAR ELASTIC MATERIALS 317

Kirchhoff stress at <j> = ld. We essentially use the results of [8] concerning
the local invertibility of the incompressible nonlinear elasticity operator. The
existence of the asymptotic expansion follows from the implicit function
theorem applied to the équations of equilibrium written in a appropriate
form.

A. CONVERGENCE OF THE DEFORMATIONS

I. Notations, preliminary remarks

1) Notations and hypotheses

Let Q be a bounded open connex subset of U3 to be considered as a fixed
référence configuration for all our bodies. Throughout the paper, we shall use
the following notations :

4> : a déformation, that is a mapping from Q to IR3 we take in a Sobolev
space Wx'y(Cïf, for some 1 < y < + oo.

F = VcJ> : the gradient of the déformation.
Adj F : the transpose of the cofactor matrix of F.

We consider a one parameter family of compressible hyperelastic materials
the stored-energy function of which has the following form (for brevity we
shali call the corresponding material the s-material) :

WE(F) = W(F) + - h(dct F) , e > 0 . (1)
o

where W is an incompressible stored-energy function which is polyconvex,
i.e. : there exists a convex function W : U9 x U9 -> R such that :

W(F) = W(F, Adj F) for all F e IR9 .

Moreover W satisfies the following hypotheses, Bail [2] :

Hl : W is continuons.
3 1 1 4

H2 : There exist constants Kx > 0, y > - , |! > 1 and - H— < T , with :

W(F, H) è JMI F T + I H D {coercivity).

We suppose that the function h satisfies :

H3 : h : U+ -> IR is convex.

H4 : lim A(S) = lim h(S) = + oo, and h(S) = 0 if and only if S = 1.
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318 H. LE DRET

H5 : There exists a number r > 1 such that :

h{h) ^ c | S - 1 r .

We see at once that under the hypotheses Hl to H5, the stored-energy
function Wz is polyconvex and satisfîes the coercivity assumptions that allow
us to apply J. Ball's existence theorems [2]. Let us consider a measurable
partition of the boundary of Q : dQ = dQ.t u dQ2

 w ^ t n ^ i n ^ 2 = 0-
Let there be given an imposed déformation (j) on ôQx such that <\> belongs to
W1~1/y'y(dQ.1)

3, an imposed traction t on dQ2 such that t belongs to LC(3Q2)
3,

with a as in theorem 7.6 of J. Bail [2] (depending on the value of y). Finally,

let there be given a body force b in Ly'(Q)3 l--\— = 1 ). Then, the dead

VY y' J
loading mixed displacement traction boundary value problem for the body
made of the e-material filling Ç1 consists in minimizing the following energy
intégral :

- f f b.$ + f t.$\,
LJn Jsn2 J

[ \ (2)

over the set of admissible déformations sé :

sf = { <|> e W^(Q)\ ${ n i = ^ , Adj V* G L^(Q)9
5

det Vc|) e Lr(Q) and det V<|> > 0 almost everywhere } .

For the incompressible body whose stored-energy function is W, the same
problem reduces to minimizing the energy :

0(4>) = f W(V<|>) - [ f è.4> + f
Jn LJn Jda2

f [ (3)
Jn LJn Jda2 J

over the set s£Q :

^ 0 = { 4) e Wl«(Q)3
9 <\>mi = (|>, Adj V<|> e L^(Q)9,

det V4> = 1 almost everywhere } .

For details, see J. Bail [2].

2) Interprétation

We wish to investigate the behaviour of equilibrium solutions for slightly
compressible bodies as the « compressibility » goes to zero, and see whether
there is a connection with incompressible elasticity. This latter point is not
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SLIGHTLY COMPRESSIBLE NONLINEAR ELASTIC MATERIALS 319

so obvions, for the corresponding Euler-Lagrange équations, the équations
of equilibrium in mechanics, are very different in nature. The compressible
ones are a nonlinear system of second order partial differential équations of
standard form. On the other hand, the solution of the incompressible équa-
tions must satisfy a highly nonlinear constraint, det V<|> = 1, and there appears
a kind of Lagrange multiplier, the hydrostatic pressure p, which is not a func-
tion of the déformation gradient V<j>, see [16], [8]. ït should be interesting to
study in gênerai the relationship between this Lagrange multiplier p, and the
trace of the stress tensor corresponding to the compressible solution in the
limit. However, the results that we shall obtain in the subséquent analysis,
are too weak for this purpose. We thus limit ourselves in Part A to the study
of the déformations alone.

The first main problem is to décide what is to be meant by « slightly compres-
sible ». Indeed, such a statement should rather be thought of as the outcome
of an experiment, than as an a priori requirement We adopt here Ogden's
point of view in the case of compressible rubberlike solids [12]. A detailed
discussion of this kind of stored-energy function may be found there. Let us
simply remark that relation (1), while keeping the polyconvexity and coercivity
needed by J. Bali's existence theory, is the simplest one and very natural for
our purposes. Indeed, the number (det F — 1) is the local measure of com-

pressibility. Adding the term - h(det F) only means that an energy supply

is needed in order to perforai a local change of volume. The penalization factor

- stands here to account for the word « slightly » : as s goes to zero, the energy
o

needed to change the volume tends to infinity, therefore the material is less
and less compressible.

II. Limit behaviour of the solutions as e -> 0

Let us make one last hypothesis :

H6 : There exists a déformation <\> in sé§ such that :

As an immédiate conséquence of J. Ball's theorem 7.6 [2], we obtain :

PROPOSITION II. 1 : For all e ;> 0, the mixed displacement traction boundary
value problem :

Inf ƒ.(<», (<!>6.i*0 for 8 = 0 ) ,

has a solution <|>E in sé (c|)0 in J / 0 ) .
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320 H. LE DRET

Proof : We just remark that sé§ c se. Therefore, since h{\) = 0,

^ e i and /£(cj>) = /0(<j>) < + oo .

Then J. Bail's theorem gives the resuit. •

THEOREM II. 2 : For each séquence en -> 0, there exists a subsequence en,
and a solution <j)'o of the incompressible problem such that :

^ - " ^ o weakly in WUy(Q)3,

Adj Ft,n -^ Adj F^ weakly in I/(Q)9 ,

det Ft -> 1 strongfy in U(Q) .

Proof : For brevity, we shall omit the index n and not explicitely extract
subsequences, while keeping this is mind.

Since s#0 a sé^ we have :

/£((t)£) = Inf /£((t>) ^ Inf /8(<|>) = 70(ct)0).

Then, by the coercivity hypotheses H2 and H5, one sees, as in Bail [2], that :

II det F, || < C ,

for some constant C independant of e.
Therefore, there exists (<j>'0, H, 8) in P71>7(^)3 * L^(Q)9 x Lr(Q) such that

(the symbol —̂  dénotes weak convergence) :

(|)£-(j)'o in W^(Q)\

Adj F't-^ H in L\Q)9 ,

det FE - - S in Lr(Q) .

By the weak continuity of the adjoint and of the determinant, we infer that :

H=Ad]F'O9 5 = detFo and tyoesf.

Since W is polyconvex, the incompressible energy 70 is weakly lower serai
continuous, and so :

/0(4>'0) ^ Hm 70(<j)£).
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Now :

8/£((t>£) = e / 0 (

and :

e70(<j)£) ^ £/£(ct)£) ^ 8/0(<t>0) -

Since /0(4>£) is bounded below, we infer that slt($e) -> 0 as e -> 0.
As s/0(4>e) -• 0, we get :

1/z(det Fe) -+ 0 as s -> 0 .

Using hypothesis H5, this yields :

det Fe ^ 1 in Lr(Q),

and therefore :
det F£ = 8 = 1, or ^^ e s/0 .

Now :

Inf 7O(4)) - /0(<|)0) ^ lim /£(4)£) è Hm 70(cj)e) + lim \ f A(det F e ) .

The mapping 70 is weakly lower semi continuous, then :

70(c))0) ^ J0(<|)'0) + l imi f «de tFJ ^ Inf IQ($) + limj- f A(detFJ.

Since h is positive, this inequality implies that :

/z(det F J = 0
lim I f

Jn

<t>o is a solution of the incompressible problem. •

We obtain a little more information about the convergence of det F in the
next proposition :

PROPOSITION II. 3 : We have (up to a subsequence) :

|| det F . - 1 ||r = «(e1").

Proof : From the proof of proposition II. 2, we see that :

lim ƒ,(<!>,) = I0(V0).
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We have :

Jn

Therefore passing to the inferior limit, we obtain :

/ o (4 ) ' o ) £ l i m (ijftj - I f *(<tet FE)"j £ 7 0(<j) 0) .

Since 70(<j>'0) = /0(4>0) = Inf Jo(<|>),

Jn

We extract a subsequence e' such that :

Then :

/ 1 f \ 1 f
lim /g'(4)eO /z(det Fe,) = /0(<t>ó) — hm — h(det Fe>).

V e' Jn / £' Jn
Therefore :

1 f
lim — I /ï(det Fe,) = 0 .

8 Jn
From the proof of proposition II. 2, we obtain :

-I *(det Fe,) -> 0 as 8 ^ 0 .

By hypothesis H5, this means that :

|| detFe, - 1 L = o(efllr). D

As was pointed out to us by Prof. Le Tallec, this latter fact implies in the
case of Ogden's materials, that all the convergences in theorem II. 2 are actually
strong.

PROPOSITION II. 4 : Let the body be made of an Ogden's mater ial, ie. ;

W(F) = atv (a12) + * tr ((Adj Cf2) H-1 A(det F) ,
o
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where : C = FT F, a > 0, b > 0, then :

Adj Fe, -> Adj Fó tfröwg/j/ in Z/(Q)9 .

Proof : From proposition II. 34, we deduce at once that :

In the case of such an Ogden's material, the energy /E(4>e) involves the norms
of Fe in U(Q)9 and Adj Fe in L"(Q)9 :

7£(ct)E) = a\\F, H? + é || Adj FE lij; + ^ ( d e t F e ) - f b.*t - f /.<|)g.
Ja Jöa2

Now :

J Q Jd£i2 Ja Jôa2

Therefore :

a II Fz. H? + fr || Adj FB, HU -^ fl II n II? + b II Adj F o |||;.

Since the fonctions || . ||̂  and || Adj . ||[[ are weakly lower semi continuous,
and a, b are strictly positive, this implies that :

II F8. ||y ^ || Ff
Q ||Y as e ' - * 0 ,

|| Adj F8. I I , - || Adj F^ || M as e ' - 0 .

Now, we use the fact that LP spaces are uniformly convex for 1 < p < oo,
and that in uniformly convex spaces strong convergence is equivalent to
weak convergence together with the convergence of norms, to conclude that :

Fe, -• F£ in LY(Q)9 strongly,

Adj F8. -+ Adj F^ in LM(Q)9 strongly. D

For a related resuit in the discrete approximation case, see Le Tallec [9].
Proposition II. 4 can be extended to more gênerai Ogden's materials such as
those described below.

We can actually state an almost gênerai resuit, following ideas of Ball-
Marsden [4], as follows :
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THEOREM IL 5 : Let the function W be strictly convex, Then the same resuit
as in proposition IIA holds.

Proof : We only sketch it, since it follows exactly the lines of Ball-Marsden
[4] theorem 4.9. The point is to use the convergence of the energy and the
strict convexity of W to extract a subsequence such that Fe and Adj Ft con-
verge almost everywhere. Then we use the coercivity assumption H2 to con-
trol the norms || Fe — Fo ||Y and || Adj Fz — Adj Fo \\^ and apply Fatou's
lemma, which yields the resuit Q

m . Remarks and conclusions

We make a few more comments about the choice of the stored-energy func-
tion (1). This choice is of course rather arbitrary. Indeed, not any actual slightly
compressible elastic material can be imbedded in such a family : but the same
results hold if we directly penalize any polyconvex stored energy function W
in the same fashion, granted that we take the restriction of W to the manifold
det F = 1 as incompressible energy function. There are other possible pena-
lizations, ho wever this particular one is simple and natural as explained in 1.2.
Ogden [12], used it to fit expérimental data with calculations, and his justifica-
tions relie partly upon expérimental évidence. Therefore, relation (1) surely
defines a good model for an actual physically slightly compressible material.
Let us also mention that, given any pair X, |i of Lamé coefficients, it is possible
to adjust an Ogden's material, i.e. a material whose stored-energy function is :

W(F) = £ Mr(Ca ' /2) + £ è,tr((Adj C)^2) + T(detF),
i = i j=i

(where at > 0, b3 > 0, oc, ^ 1, P; ^ 1, C = FT F and T is convex), so that the
linearization at F — ld of the corresponding stress tensor exactly is :

T(F) = XtrE + 2ji£, for E = ^(F + FT),

while in the same time, J. Ball's existence theorems work for the nonlinear
problem, Ciarlet-Geymonat [5]. In the context of slightly compressible fluids,
Ebin [6], uses exactly the same kind of penalized constitutive law in order to
prove the convergence of compressible motions to incompressible ones, via
differential geometrie methods.

We have thus proved the convergence as 8 tends to 0 of the compressible
energy mininüzers <t>£ to an incompressible energy minimizer 4>0. The conver-
gence is strong in W1>y(Q).

Note added in proof . Professor J M, Bail has brought to the author's attention that the pena-
hzation idea of part A had been used in the same way but m a slightly less gênerai context by
R. Rostamian, Internai constraints in boundary value problems of continuüm mechames, Indiana
Math J, 27 (1978), pp 637-656
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SLIGHTLY COMPRESSIBLE NONLINEAR ELASTIC MATERIALS 325

B. FORMAL BEHAVIOUR OF THE STRESS IN THE INCOMPRESSIBLE LIMIT

I. Hypotheses

In this part, we suppose that the compressible problems have a solution <|>E

in the space W2>P(Q)3, p > 3, for s0 > 8 > 0, the déformation <j>£ satisfying
strongly the equilibrium équations :

div T^F,) + b = 0 in Q, b e Z/(Q)3,

7KFJ n = t on 3Q2 , t e W1 '

<J>£ = 4> on ffl1; ^ G W 2 '
(4e)

where T^ dénotes the first Piola-Kirchhoff stress tensor corresponding to the
8-material defïned by relation (1), namely :

dW
T*R(F)=^f(F), for s > 0 .

The explicit expression of T^ is therefore the following :

TUF) = ^(F)+l A'(det F) Adj FT.

More generally, we shall consider non necessarily hyperelastic materials the
constitutive law of which we shall write in the following way.

rR(F) = TD(F) Adj FT + (t^F) + - A'(det F)) Adj FT . (5)
\ 8 /

Here, the tensor TD(F) is nothing but the deviatoric part of the Cauchy stress
tensor T(F). We shall assume that :

H5' : /z'(S) = 0 if and only if 8 = L
H6 : T%) G C2(R9, U9\ tx(.) e C2(U9, R) and A(.) e C3(U).

Under these hypotheses, it foliows from the results of Valent [17], that
the operator :

W2'p(Qf -> WUp{Qf ,

is of class C1 and is locally bounded together with its first derivative. There-
fore we shall be allowed to use Taylor-Young expansions up to the first order.
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326 H. LE DRET

Hypothesis 1.1 : We assume that the solution 4>g admits an asymptotic expan-
sion of the form :

4>e = ())0+8(t)1+ö(8) in W2'P(Q)3, where 4>ô  ̂ 1 belongto W2'P(Q)3

4>0=c|> on ÔQX, e<\>1 + O(E) = 0 on dQ1 .

Hypothesis 1.2 : IfdQ2 ^ 0 (mixedproblem\ we assume that <j)0 is a global
diffeomorphism of Q on to c|>0(Q).

Hypothesis 1 .3 : IfdQ2
 = 0 (pure displacementproblem), we assume that <\>

is a global diffeomorphism of Q onto c|>(Q) such that meas (<)>(Q)) ~ nieas O.
Moreover, we assume that Q is diffeomorphic to the unit bail ofU3.

Remarks 1.4: Hypothesis 1.1 might be too strong in gênerai when 3Q2 / 0
(apart from the fact that no gênerai existence resuit is known for System (4g)).
The solution should rather be expected to belong to W1>P(Q)3. However, in
the pure displacement case if the body force b is small enough, we shall prove,
in part C, the existence of such an asymptotic expansion.

H. LEVUT BEHAVIOUR AS £ GOES TO 0

Let us first recall some results about incompressible bodies. The constitutive
law of an incompressible elastic body is defined by the tensor TD(F) only.
We shall say that a déformation $ satisfies the restricted principle of virtual
works if the following equalities hold, see [8] :

For ail \|/ in H1(Q)3 such that \ | / j a n i = 0 and Adj Vc()r : V\|/ = 0 in Q,

f CC
TD(F) Adj FT : V\|/ + i.\|/ + M|/ = 0 , (6)

Jn Jn Jdn2

where F = V<|), the dot dénotes the scalar product of U3 and the colon dénotes
the scalar product of 3 x 3 matrices, i.e. :

A : B = tr A T B, for A9 B in M 3 (the space of 3 x 3 matrices).

Then, the following resuit holds.

PROPOSITION II . 1 [8] : Let there be given a déformation 4> satisfying the res-
tricted principle of virtual works (6). Then, there exists a unique pressure field p
in L2(Q) (p in L2(Q)/U in the pure displacement case) such that <|> satisfies the
«full » principle of virtual works : for ail \|/ in H1^)3, \|/jani = 0,

- f (TD + p Id) Adj FT : V\|/ + | è.\|/ + | t.ty = 0 . (7)
Jn Jn Jôn2
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SLIGHTLY COMPRESSIBLE NONLINEAR ELASTIC MATERIALS 327

Remarks : Equations (7) are the weak form of the equilibrium équations for
the incompressible material defmed by the tensor TD. Proposition II . 1 is thus
a justification of the generally accepted constitutive law for incompressible
bodies, [16] :

T(F) = H(F) + p ld ,

where p is a so-called indeterminate hydrostatic pressure. Let us state the
main resuit of this section :

THEOREM II.2 : Under the hypotheses 1.1, 1.2 and 1.3, we have

i) det V<|>0 = 1 in Q,

ii) 4)0 is a solution of the equilibrium équations of the incompressible body
defined by the tensor TD,

iii) the hydrostatic pressure pö associated to 4>0 by proposition II. 1 satisfies :

p0 = lim \ tr V = h(F0) + h"{\) (Adj F? : Fx),

where Tz is the Cauchy stress tensor : T%Fe) = A , _ Te
R(Fe) F8

T.
det t z

Remark : The hydrostatic pressure appears here (formally) as the strong
limit of the trace of the Cauchy stress as the compressibility goes to zero.

Let us start with some lemmas.

LEMMA II. 3 : The matrix Adj F£ admit s an asymptotic expansion :

Adj Fz = Adj F0 + eDFo Adj.Fi + o(e) in WUp(Q)9 .

Proof : As a function from M3 to M3, the mapping Adj is a homogeneous
polynomial of degree 2. We immediately infer that : for all A, B in Af3>

Adj (A + B) = Adj A + DA Ad}.B + Adj B.
Then:

Adj Fz = Adj Fo + DFo Adj (eFi + o(e)) + Adj (zFx + o(s))

= Adj Fo + eZ)Fo AdKFi + O (e)) + £2 A d j ^ + O(e)).

Since /? > 35 ^ ^ ( Q ) C_,C°(Q) and Adj(FA + O (e)) is bounded in WUp(Of
(WllP(Q) is a Banach algebra [1]), therefore the lemma clearly holds. •

LEMMA II.4 : The first Piola-Kirchhoff stress tensor T^(F) admits the
asymptotic expansion :
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328 H. LE DRET

+ (TD(F0) + (A"(det Fo) Adj Fo
r : Ft + fx(F0)) Id) Adj Fo

r

A'(det Fo) Adj F^(DFo Adj. F t ) r

Proof : Since WlfP(Q) is a Banach algebra, we obtain the asymptotic expan-
sions of products by multiplying the asymptotic expansions of the factors. We
have :

TD(F£) = TD(F0) + o( l ) , by continuity .

/z'(det F) = /z'(det Fo) + e/z"(det Fo) Adj Fo
r : F1 + o(e),

by Taylor's formula.
Therefore, using lemma II . 3, we get :

Fo) ld

+ (A"(det Fo) Adj F0
T : Fi + t^)) ld +

x (Adj Fo
r

= l h'(det Fo) Adj F0
T + (TD(F0)

(A"(det Fo) Adj Fo
r : Fx + h(F0)) ld) Adj Fo

r

A'(det Fo) (DFo Adj.F,)T

Proof of theorem I I . 2 i) : The mapping div is linear continuous from W1 >P(Q)9

to LP(Q)3, therefore the equilibrium équations (4e) can be expanded in the
following way :

11 div (A'(det F0) Adj F j ) + div ((TD(F0) +

+ (/z"(det Fo) Adj Fo
r : Fx + ^(Fo)) ld) Adj Fo

r) (8£)

+ div (A'(det Fo) Adj F^(DFo Adj.Fi)T) -f b + o(l) = 0 in Q ,

corresponding expansion on 3Q2 .

We multiply équations (8e) by £, and then let 8 = 0. This yields :

div (AXdet Fo) Adj F0
T) = 0 in Q

A'(det Fo) Adj Fo
r.« = 0 on dQ2 (9)

4>0 = ()) on ôQi .
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Recall that by the Sobolev imbedding theorem, <|>0 is of class C 1 and Fo , Adj F o ,
det F o are continuous on Cl.

The first équation in (9) gives :

Adj F% V(/z'(det Fo)) = 0 in ÇÏ, since div Adj Fo
r = 0 (Piola identity).

(10)

We now separate the pure displacement case and the mixed case.

* mixed case :

By hypothesis 1.2, <t>0 is a global diffeomorphism of fi onto 4>0(Q), therefore
Adj F £ is everywhere nonsingular. Consequently :

V(A'(det foyj = o in Q, and since Q is connex :

/*'(det Fo) = C , for some constant C, in Q .

The second équation in (9) now gives :

A'(det Fo) = 0 on <3Q2 , therefore :

A'(det Fo) = 0 in Q , or equivalently by H5 ' , det Fo = 1 in Q .

* pure displacement case :

By hypothesis 1.3, 4> is a global diffeomorphism of Q onto 4>(p). Let us
extend (j)"1 to IR3. Then (j)"1 o (|>0^n = ld. We thus reduce ourselves to the
case <|> = ld. We then reduce ourselves to the unit bail by hypothesis 1.3
again. Let us set :

& = { x e Q , Adj FQ(X) is nonsingular } .

Then O is an open subset of Q, and as in the mixed case, we see that #(det F0)
is constant on each connex component of (9. Let us index the connex compo-
nents of O by the values of h'{àçt Fo) :

0C is a connex component of Q where A'(det Fo) = c, Fix c, and let Uc = u(9c

the union of all such components. Then, Uc is open as a union of open sets.
Moreover Uc is closed Indeed, Uc = A'CdetFo)"1 { c} n (9, If Uc =£ 0 ,
then c 7e A'(0) by t h e définition of (9. Let x be a point of /i'(det F Q ) " 1 { c }.
Then, A'(det F0(x)) ^ h'(0) and therefore det F0(x) ¥^ 0 or xe(D. Conse-
quently, AXdet Fo)"1 { c } c ö and I7C = ft'(det Fo)"1 { c }. Since /z'(det Fo)
is continuous, Uc is closed Now, since Q is connex, we see that the following
alternative holds :

oc) there exists a unique c in IR, c ^ /z'(0), with 0 = 1 / ^ or,

P) O = 0 , or Adj F j is singular over Cl.
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Now, if P) holds, by Sard's theorem we get :

meas <|>0(O) = 0 .

Moreover c()0(Q) is compact and has also measure zero. Therefore, <\>0(Q) n Q
is not dense in Q. So there exists an open subset U of Q such that
U n (()o(Û) = 0- Since 4>0|an = Id> w e c a n take U ci Q. Let us consider
a bail i? c U. TherUhere exists a retraction of Q \ B onto 3Q, Le. a continuous
mapping p from Q \ i ? to 3Q, such that p\ôa = Id. By construction, p o <j>0

is continuous and is actually a retraction of Q onto 3Q. This is impossible,
therefore a) holds. We now return to the initial Cl and <j>. Let us dénote by
d(§, Q, b) the topological degree of the mapping 4> at the point b with respect
to Q. Then :

for ail bt<bo(dQ), d®09 Q, b) = dfà, Q, b) ,

since

By hypothesis 1.3, <|> is a global diffeomorphism, therefore :

for b G (j>(n)\<j>(öO) , dC<|>o, Ü, b) = 1 , and

for è£^ (Q) , 4 * * 0 , 6 ) = 0.

Since det Fo = 8 ^ 0, by the définition of the degree :

d(<i>0, Q, 6) = X sign (ô) = sign (S) Card { c^ \b) }

Then, Ô > 0 and :

for b e <j>(Q) \ <j>(«î), Card { cj) Ö \b) } = 1 and,

for iÉ4>(n), C a r d l ^ ô 1 ^ ) } = 0.

Now 4>oj3Q = c|)|3n, and we see that c|>0 is a global diffeomorphism from Q
onto 4>(fi). Finally, thanks to the change of variable formula for intégrais,
we get :

meas Q = \ dx = det Fo dy = 8 dy = 8 meas <|>(fi),

and hence, det Fo = 8 = 1. •

Remarks : In the mixed case, we have to assume a priori the global invertibi-
lity of c|)0. In the pure displacement case, this is a conséquence of the same
assumption made on the boundary values <|> only, which is very natural.
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Proof of theorem II . 2 ii) and iii) : From the preceding step, we have seen
that in any case, h'(det Fo) = 0. We let s tend to zero in the remaining terms
of équations (8e). This yields :

div ((TD(F0) + (*"(det Fo) Adj Fo
r : Fx + h(F0)) W) Adj Fo

r) + b = 0

in Q ,

(TD(FÖ) + (A"(det Fo) Adj F0
T : F> + tl(F0)) ld) Adj F0

T n = t

on 3Q 2 , (11)

(\>ö = c)) o n ôQj^ .

Now, TD(F0) belongs to WUp(Q)9 C->Hl(Q)9, as well as the other terms.
We can clearly multiply équations (11) by tests functions \|/ of H1(Q)3 such
that :

Îdfit = 0 ' Adj FQ : V\|/ = 0 almost everywhere .

Integrating the resulting equalities by parts, we get :

- f TD(F0) Adj Fl : Vxl/ 4- f 6.x|f + f ^ = 0 .
JQ JQ JdSli

Therefore (|)0 satisfies the restricted principle of virtual works (6), and is a
solution of the equilibrium équations for the limit incompressible body.
By proposition II. 1, we see that the associated hydrostatic pressure p0 satisfies :

p0 = \ lim tr T%F) = A"(det Fo) Adj Fo
r : Fx + ^(F o ) . Q

Remarks : Let us point out again that the results of theorem II. 2 are quite
formai. The gênerai convergence resuit we have proved in part A gives us
only a convergence in PFljP(Q)3. Here, we have assumed more regularity
of the solutions (W2fP(Q)3\ we have assumed that they satisfy strongly the
equilibrium équations and fmally we have assumed a strong C 1 dependence
of the solution c|)E on the parameter 8. In the mixed case, all thoses hypotheses
surely are too strong. However, we shall see in part C that they can be satisfied
for the pure displacement problem, provided that the body force b is small
enough.
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C. EXISTENCE OF THE ASYMPTOTIC EXPANSION OF THE SOLUTION IN THE PURE
DISPLACEMENT CASE

I. Hypotheses

In this section, we shall assume that the function h is of class C3 , and we
normalize it by taking /*"(1) = 1 without loss of generality. Therefore, the
équations to solve are :

div ((TD(Fe) + ^(F e) ïd) Adj Fl) + - div (*'(det / y Adj F,7) + b = 0 in Q

<}>e = Id on dQ.. (12)

where c|>e = <|>0 H- sc()1(8) + e2 <t>2(s) with <|)0, §u <\>2 in W2iP(Q).

(13)

The idea is to start the expansion by a known solution <j>0 of the incompressible
problem. To do this, we make on the tensor TD suitable ellipticity assumptions
at <j) = Id, see [8], so that the following proposition holds ;

let us dénote by :

Z2)P(Ü) = { 4> e W2tP(Çïf , c|>,ôn = Id , det V<|) = 1 in Q } ,

Since p > 3, this set has a manifold structure, [8],

WUp>°(Q) = {qeW1>\qeWUp(Q)- \ q =
\ Jn

We defîne the incompressible elasticity operator by :

E : 22>P(Q) x W 1 ^ - 0 ^ ) -^ L^(Q)3

(<|>, q) -> div (TD(F) Adj F T + g Adj

PROPOSITION 1.1 [8] : The operator E is a local diffeomorphism front a neigh-
borhood of(ld, 0) in S2fP(«) x WX'P>°(Q) to a neighborhoodofO in LP(Q)3.

This resuit is proved via the inverse function theorem. We have implicitely
assumed that cj> = Id is a natural (stress-free) configuration Le. : TD(ld) = 0,
which implies £(Id, 0) = 0.

COROLLARY 1.2 : If the body force b is small enough in LP(Q)3, there exists
a unique solution (<f>0, p0) of the incompressible problem close to (Id, 0) in
Z2iP(Q) x ^ - " ^ ( Q ) .
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Moreover, if b is chosen in WlïP(Q)3, then <|>0 belongs to W3tP(Q) and there-
fore 4>0 belongs to C2(Q)3 [8]. Again in [8], we show that <\>0 is a global diffeo-
morphism, therefore the linear mapping :

0 : W2'P(Q) -+ W2>P(Q),

is an isomorphism, [1]. In this way, we can reduce ourselves to 4>0 = ld, to
simplify the calculations. Moreover, although the first Piola-Kirchhoff stress
tensor has to be taken relatively to this new référence configuration, by pro-
position 1.1 and the remark above, we see that the differential at (<J>, p) =
(ld, p0) of the corresponding elasticity operator (still denoted by E) is an
isomorphism.

LEMMA 1.3: The differential of the elasticity operator E at (ld, p0) is expressed
as follows ;

I W o ) E : Tld Z2>p(D) x W^°(Q) -> Lp(Qf ,

(x|/, q) h+ div (DId T
D.^ - TD(ld) Vx|/T) + Vq - Vv|/T V/?o -

where the tangent space to Z2 p(Q) at c|) = ld is the space :

TM £2 , , (n) = { ̂  e (W2^(Ö) n i y ^ ( Q ) ) 3 , div x|/ = 0 in Q } .

Proö/ : Making use of the Piola identity (div Adj F T = 0), we get

£(4>, p) = div ( T V ) Adj F r ) + Adj F r Vp .

By direct computation, we have :

DId Adj.H = tr H ld - H, for all tf in M 3 .

Therefore, since tr Vv|/ = div \|/ = 0 for any \|/ in Tïd S2fP(n), the result clearly
holds. D

Let us pose :

L(V\1/) = Dld TD.y\f + TD(ld) (div ^ ld - V\|/T) .

H. CONSTRUCTION OF THE ASYMPTOTIC EXPANSION (13)

We shall seek <\>1 and c|>2 in supplementary

closed subspaces of {W2>P{Q) n Wj '
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since we hope to find them by the implicit fonction theorem and with the help
of proposition 1.1. Actually, $x will somehow play the rôle of the displacement
in the differential of the elasticity operator E and $2 (or more precisely div <\>2),
the rôle of the hydrostatic pressure. For reasons to be cleared up later on, we
choose :

dh e £i = { <|> 6 (W2>?(Q) n

• ' ( 1 4 )

= div"1 { WUp'°(Çi)} ,

where div"1 is a continuous nght inverse of the mapping :

div : (W2>P(Q) n W^p(Q)f -• WUPt0(Q).

That such a right inverse exists follows for example from the results in [8].
The space E1 is an affine subspace, a translation of the space TIdZ2iP(Q) :

Ei = Tld S2tP(Q) + div"1 lp0 -( ^ )

V meas " Jn /

Therefore one clearly has :

(W2>P(Q) n Wl'p(O)f = E1 ® E2 .

Let us now turn to the effective construction of the asymptotic expansion (13).

THEOREM II.2 : There exists a neighborhood V of 0 in U and two Cx~func-
tions :

§! : V -> E1 and $2 : V ~+ E2 , such that :

<Ke) = Id + £<!>!(£) + e2 <j)2(e),

solves équations (12) for e wz F.

Proof : Let us pose :

G(e, <!>!, <j>2) = V4)! +eV<|>2.

Then G is in the space C\U x Ex x £2, Py1>p(Q)9). For brevity, we let :

T(F) =
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although this tensor is not the Cauchy stress tensor. Let us defme :

H(e, <(>)== e div (T(F) Adj FT) + Adj FT W(hf(det F)) + eb . (15)

Now, we take cj) to be :

<!>fe <t>i, <t>2) = ld + £([>! 4- e2 c|>2 •

Then :

F = ld

We now expand équation (15). Since h"(\) = 1, by Taylor's formula, we get :

Adj FT V(A'(det F)) = (ld + e(tr G ld - GT) + s2 Adj G7) x

x V(s tr G + e2 r^e, G)), (16)

where r^., .) is of class C1. Therefore :

Adj F r V(^(det F)) - s V tr G + e2 r2(e, G) ,

where r2 shares the same properties as rx. Putting this last équation into (15),
we get :

ƒƒ(£, <|>) = E div (T(F) Adj FT) + e V tr G + e2 r2(e5 G) + eô .

We are thus led to define :

H{z, 4>i, <|)2) = div (T(F) Adj FT) + V tr G + sr2(s, G) + 6 . (17)

Using Taylor's formula again, we obtain :

div (T(F) Adj F7) - div (T°(Id) + ^(Id) ld + s L(G)) +

+ e(tr G ld - GT) V^(Id) + e V(DW t^G) + e2 r3(e5 G) ,

- div (Tö(Id) + /i(Id) ld) + e(div L(G) +

+ (tr G ld - GT) V^(Id) + V(DW fx.G)) + e2 r3(e, G) .

Now, by corollary 1.2 :

div TD(Id) = - ypo - *.

Therefore, équation (17) becomes :

£fe *i , >̂2) = V(^(Id) - ^0) + £ div L(G) +

+ e((tr G ld - GT) V^(Id) + V(DM ^.G))

+ s2 r3(e, G) + V(div 4)0 + £ V(div <$>2) + er2(s, G) .
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Recall now that cj>± belongs to the space Ex. Therefore, the zero order terms
vanish, and we define :

% 4>i, <f>2) = \ H& ct>l5 <|>2) = div L(G) + (tr G ld - GT) V^(Id) +

+ V(DId t±.G)+ V(div <|>2) + r2(s5 G) + £r3(s, G) . (18)

For s = 0, we have G = V<|>15 and équation (18) becomes :

#(0 , <!>!, <t>2) = div Uy^x) + (div $x ld - V<J>0 V/x(Id) +

+ V(DId tx.V<J>X) + V(div 4>2) + r2(0, Vc^O . (19)

We henceforth décompose the proof into several lemmas.
To proceed further, we have to compute explicitely the remainder r2(0, V ^ ) .

We do this in the following lemma :

LEMMA II . 3 : The following relation holds :

+ (div <\>x ld - V<|>D V(div <\>±).

Proof of lemma II . 3 : The term r2(M .) comes from the second order terms
in expansion (16). We have :

F
2

F

det F = 1 + e tr G + y D& det.(G, G) + o(e2).

Therefore*'(det F) = e tr G + y (D2 det.(G, G) + h'"{\) (tr G)2) + o(e2).

Now, it is easily checked that :

D& det (G, H) = tr G.tr H - tr (G.#) ,

and thus :

F) = 8 tr G + y ((1 + h"'{\)) (tr G)2 - tr (G2)) + o(e2) .
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We finally obtain :

Adj FT V/i'(det F) = s V tr G -f s2ïj V((l + h"'{\)) (tr G)2 - tr (G2)) +

+ (tr G ld - GT) V tr G] + o(e2) .

Letting 8 = 0 yields G = Vcj)̂  and tr G = div cj)̂  and the lemma holds. •
Despite its unpleasant look, the term r2(0, Vc^) will fit with the preceding

terms in équation (19), so as to allow us to use the implicit function theorem
with proposition 1.1 and lemma 1.3. Let us state the following lemma :

_LEMMA II.4 : There exists a unique couple (<^1, ̂ >2) in E1 x E2 such that

Proof of lemma II. 4 : Let us pose :

A ' V * + ((1

Then K is a given nonlinear operator. Using lemma II. 3, we get

0, <bi, <t>2) = div LCV^O + (div ^ ld - V(j)[) ^ ^ ( I d ) + div

Since <^1 belongs to Eu we have :

#(0, <t>is <t>2) = div L{V^) + (div ((>! ld -

+ V(div cj)2). (20)

Now9 the affine space Ex is parallel to the space TIdH2p(Q). Therefore, the
operator Dldpo E is still an isomorphism when acting between E± x WltPt0(Q)
and Z/(Q)3. Thus, there exists a unique (<j>l9 g) in ^ x W1'^0^) such that :

Indeed, div §1 is independent of ^1 for ()>! in ^ by the définition of Ev More-
over div <t>i.V/?0 belongs to LP(Q)3. Then :

0, *! , 4>2) = - V« + V(K(^)) + V(div ()>2).

Since (J)2 belongs to div"1 (WltPf0(Q% there exists a unique 4>2 such that :

vol 20, no 2, 1986



338 H. LE DRET

Hence : _

Tracing back through the proof, we easily see that the solution is unique. G
To use the implicit function theorem, we only have to show that the partial

differential D^u^2) H(0, <K, ct>2) is an isomorphism between TId H2p(Q) x E2

and LP(Q)3. This is the aim of the next lemma.

LEMMA II. 5 : The partial differential :

D«lM H(0, (J>15 <|>2) : T Id Z2 j , (Q) x E2 -> L*(fi)3 ,

is an isomorphism.

Proof of lemma II. 5 : Let us express this differential from équation (20) :

*2) = D«uM H(0, $19 *2) (\lflf v|/2) -

= div L(V^) - Wi Vpo + V(D+1 K.xK) + V(div xli2).

Let b be an element of LP(Q)3. Then by lemma 1.3, there exists a unique
0K, 5) sucri ^at :

div ^ ^

Then :

And again there exists a unique \|/2 such that

V(div^2) - V^ + V(D^ K$x) = 0.

Therefore5(\|/l5 \|/2) = b and 5 is onto. Taking b = 0 and tracing back through
the proof shows that B is one-to-one as in lemma II. 4. Finally since B is conti-
nuous, by the Banach theorem, we see that B is an isomorphism. •

End of the proof of theorem II. 2 : By construction, H belongs to C x(iR x Et x
E2, Z/(Q)3). For £ — 0, we have seen that there exists a unique ((j)1? c}>2) in
£i x £ 2 such that :

^(0,^,^) = 0.

Moreover : D^lt^2) H(09 fyl9 <$>2) is an isomorphism between TId S2tP(fl) x £2

and Z/(Q)3.
The resuit thus follows from a straightforward application of the implicit

function theorem. •
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As (^(e) and 4>2(£) a r e C1-functions of s, expansion (13) actually takes the
(less précise) form :

c()(s) = ld + * h + o(e2) in W2>P(O)3,

which agrées with the expansions in part B, therefore justifying the results there
in the special case of the pure displacement problem, with suitably elliptic
elasticity tensor and sufficiently small body forces.

Let us end up the paper with a picture of what happens in the space W2*p(Çïf.
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