@article{M2AN_1985__19_4_671_0, author = {Potra, Florian A.}, title = {On superadditive rates of convergence}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {671--685}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {19}, number = {4}, year = {1985}, mrnumber = {826229}, zbl = {0582.65043}, language = {en}, url = {http://www.numdam.org/item/M2AN_1985__19_4_671_0/} }
TY - JOUR AU - Potra, Florian A. TI - On superadditive rates of convergence JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1985 SP - 671 EP - 685 VL - 19 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1985__19_4_671_0/ LA - en ID - M2AN_1985__19_4_671_0 ER -
Potra, Florian A. On superadditive rates of convergence. ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 4, pp. 671-685. http://www.numdam.org/item/M2AN_1985__19_4_671_0/
[1] On a problem of V. Ptak, Cas. pro pest. mat. 103 (1978), 365-379. | MR | Zbl
,[2] A remark on a factorization theorem, Comm. Math. Univ. Carol (CMUC) 15 (1974), 611-614. | MR | Zbl
, ,[3] Itérative solution of nonlinear équations in serval variables, Academic Press, London, 1970. | MR | Zbl
, ,[4] An overrelaxed modification of Newton's method, Revue Roumaine des Mathématiques 22 (1977), 959-963. | MR | Zbl
, ,[5] A remark on small divisors problems, Czech. Math. J. 103 (1978), 1-12. | MR | Zbl
, ,[6] On a modified secant method, Math. Rev. Anal. Numer. Theor. Approximation, Anal. Numer. Theor. Approximation, 8,2 (1979), 203-214. | MR | Zbl
,[7] An application of the induction method of V. Pták to the study of Régula Falsi, Aplikace Matematiky 26 (1981), 111-120. | MR | Zbl
,[8] The rate of convergence of a modified Newton's process, Aplikace matematiky 26 (1981), 13-17. | MR | Zbl
,[9] An error analysis for the secant method, Numer. Math. 38 (1982), 427-445. | MR | Zbl
,[10] Nondiscrete induction and a double step sécant method, Math. Scand. 46 (1980), 236-250. | MR | Zbl
, ,[11] On a class of modified Newton processes, Numer. Funct. Anal, and Optimiz. 2 (1980), 107-120. | MR | Zbl
, ,[12] Sharp error bounds for Newton's process, Numer. Math. 34 (1980), 63-72. | MR | Zbl
, ,[13] A generalization of Régula Falsi, Numer. Math. 36 (1981), 333-346. | MR | Zbl
, :[14] Nondiscrete induction and an inversion free modification of Newtons method, Cas. pro pest. mat. 108, 4 (1983), 333-341. | MR | Zbl
, :[15] Nondiscrete induction and itérative processes, Pitman Advanced Publishing Program, London, 1984. | MR | Zbl
, :[16] Some metric aspects of the open mapping theorem, Math. Ann. 165 (1966), 95-104. | MR | Zbl
:[17] A quantitative refinement of the closed graph theorem, Czech. Math. J. 99 (1974), 503-506. | MR | Zbl
:[18] A theorem of the closed graph type, Manuscripta Math. 13 (1974), 109-130. | MR | Zbl
:[19] Deux théorèmes de factorisation, Comptes Rendus, Acad. Sci. Paris 278 (1974), 1091-1094. | MR | Zbl
:[20] Concerning the rate of convergence of Newton'sprocess, Comm. Math. Univ. Carolinae 16 (1975), 599-705. | MR | Zbl
:[21] A modification of Newtons method, Cas. pest mat. 101 (1976), 188-194. | MR
,[22] Nondiscrete mathematical induction and itérative existence proofs, Linear Algebra and its Applications 13 (1976), 223-236. | MR | Zbl
,[23] The rate of convergence of Newton's process, Numer. Math. 25 (1976), 279-285. | MR | Zbl
,[24] Nondiscrete mathematical induction, in : General Topology and its Relations to Modem Analysis and Algebra IV, 166-178, Lecture Notes in Mathematics 609, Springer Verlag, 1977. | MR | Zbl
,[25] What should be a rate of convergence, R.A.I.R.O., Analyse Numérique 11 (1977), 279-286. | Numdam | MR | Zbl
,[26] Stability of exactness, Comm. Math. (Poznan) 21 (1978), 343-348.
,[27] A rate of convergence, Numer. Funct. Anal, and Optimiz. 1 (1979), 255-271. | MR | Zbl
,[28] Factorization in Banach algebras, Studia Math. 65 (1979), 279-285. | MR | Zbl
,[29] Eeingrenzung von Lösungen mit Hüfe der Régula falsi, Computing 6 (1970). 318-329. | MR | Zbl
, ,[30] A remark on transitivity of operator algebras, CAS. PEST. MAT. 100 (1975), 176-178. | MR
,