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MATHEMATICALMODEUJNGANONUMEIUCALANALYStS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(vol. 19, n° 4,1985, p. 601 à 609)

CONVERSE RESULTS IN THE WALSH THEORY
OF OVERCONVERGENCE (*)

by A. S. CAVARETTA (*), Jr., A. SHARMA (2) and R. S. VARGA (*• 3)

Résumé. — Récemment, J. Szabados a obtenu un nouveau théorème réciproque dans la théorie de
la sur-convergence de Walsh, fondé sur VInterpolation de Lagrange. Ici, nous développons un théo-
rème réciproque similaire, fondé sur VInterpolation d'Hermite, qui généralise le résultat de Szabados.

Abstract. — Recently, J. Szabados has obtained a new converse theorem in the Walsh overconver-
gence theory, based on Lagrange interpolation. Hère, we similarly develop a related converse theorem,
based on Hermite interpolation, which generalizes Szabadoi resuit

1. INTRODUCTION

Let _4p dénote the collection of functions analytic in | z | < p, and, as usual,
let nm dénote the collection of all complex polynomials of degree at most m.
For any f(z) e Ap with p > 1, and for any positive integer n, let L„_1(z; ƒ)
dénote the Lagrange polynomial interpolant in nn_1 of f(z) in the n-th roots
of unity, i.e.,

L B . 1 ( œ ; / ) = / ( œ ) , (1.1)

OO

where co is any nth root of unity. With f(z) := £ ak z
k in | z | < p, and for

k=0

each positive integer /, set

e„-!>;/)== ' l I>* + , M Z\ (1.2)
j = 0 fc=O

so that Ô»-i,i(z ; ƒ ) i s also an element of T C ^ . Then, the original and oft-cited
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602 A. S. CAVARETTA, JR. et al

beautiful resuit of J. L. Walsh [6, p. 153] on overconvergence is the case / = 1 of

THEOREM A ([1]) : For any ƒ (z) E Ap with p > 1, and for any positive inte-
ger l,

l i m { L B _ 1 ( z ; / ) - Q l l _ 1 ( I ( z ; ƒ ) } = ( ) , for ail | z j < p < + 1 , ( 1 . 3 )
n-*oo

the convergence being uniform and geometrie on any closed subset of\ z\ < pl+1.
Moreover, the resuit is best possible (in the sense that (1.3) is not valid at each
point of \z\ = pl + 1 for ail f(z) in Ap).

Now Theorem A, in the terminology of approximation theory, is a direct
theorem in the Walsh overconvergence theory, in that the assumption ƒ (z) e Ap

leads to the overconvergence resuit of (1.3). Recently, Szabados [4] obtained the
foliowing interesting converse theorem to Theorem A. For notation, let Ax C
dénote the collection of ail f(z) in Ax which are continuo us on | z | = 1.

THEOREM B ([4]) : Assume that f(z) e Ax C. Ifp > 1, if l is a positive integer,
and if the séquence

{Ln-dzin-Qn-lA'lf)}^! (1-4)

is uniformly bounded on every closed subset of\z\ < pl + 1, then f(z) e Ap.

It may be asked if the conclusion of Theorem B (namely, that ƒ (z) G Ap)
is best possible, i.e., with the hypothesis of Theorem B, could ƒ (z) e AQ. where
p' > p, in gênerai ? On considering the particular function f(z) •= (p — z)"1

which, with (1.3) satisfîes the hypothesis of Theorem B, one sees that f(z)
is an element of Apj but is cîearîy not an element of Ap> for any p' > p. In
this sense, Theorem B is best possible, as was remarked by Szabados [4].

There are now many known direct theorems in the Walsh overconvergence
theory on the différence of interpolating polynomials (cf. [1], Rivlin [2], [5,
chap. 4]). It is natural to ask if there are similar converse theorems which
complement Szabados' Theorem B. Hère, we show that such a converse
theorem can be similarly derived for Hermite polynomial interpolation.

2. STATEMENT OF A NEW RESULT.

We first state a direct theorem for Hermite interpolation in the Walsh
overconvergence theory. To fix notations, for any f(z) e Ap with p > 1, for
a fixed positive integer r, and for every positive integer n, let hrn(z ; f) dénote
the Hermite polynomial interpolant in Krn^1 of ƒ ƒ' , . . . ,ƒ^"^ in the nth
roots of unity, i.e.,

^ } - i (œ ; ƒ) = / ° » , 7 = 0, 1, ..., r - 1, (2.1)
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WALSH THEORY OF OVERCONVERGENCE 603

00

where co is any wth root of unity. Again, with f(z) -= £ ak zk *& I z I < P>

and for any positive integer /, set

l - l n - l

£ I ,-- 1)n z*, (2.2)

where (cf. [1])

' ( V + i ~ 1 ) k (2.3)
k=0 \ & /

and where the last sum in (2.2) is defined here, and subsequently, to be zero
when 1=1. Note that 6m-u(z) *s a l s o ^ Krn-i- With these notations, a
direct theorem for Hermite interpolation in the Walsh overconvergence
theory is

THEOREM C ([1]) : For any f(z) e Ap with p > 1, and for any positive inte-
gers r and /,

lim {hrn^(z; f) - Qrn-ui^l f)} = 0, for all | z | < p 1 + « " \ (2.4)
n-*oo

the convergence being uniform and geometrie on any closed subset of\z\ < p1 + {l/r).
Moreover, the result is best possible.

A new result, a converse result to Theorem C, is the following. For nota-
tion, for each positive integer r, let Ax C

(r~1} dénote the collection of all f{z)
in At for which f(z)9 f'(z),..., and / ( r -1 )(z) are all continuous on | z | = 1.
For any f(z) e A1 e*'*"1* and for any n ̂  1, it is evident that the interpola-
tory polynomials hrn_x(z ; f) and Qrn_ll(z ; ƒ) of (2. l)-(2.2) are well-defined.

THEOREM 1 : Assume that f(z) e A1 C ( r -1 ). If p > 1, ifl is a positive integer,
and if the séquence

{*n,-i(z;/)-&-!>;ƒ) }»"i (2-5)

is uniformly bounded on every closed s u b s e t of \z\ < p 1 + (i/r), t h e n f ( z ) e A p .

As the special case r = 1 of Theorem 1 reduces to Szabados' Theorem B,
we remark that Theorem 1 then generalizes Theorem B.

The proof of Theorem 1 will be given in Section 3. Because it is needed in
the proof of Theorem 1, we state, as in Theorem D below, a recent related
result of Saff and Varga [3, theorem 2] on Hermite interpolation in the Walsh
overconvergence theory.
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604 A. S. CAVARETTA, JR. et al

THEOREM D ([3]) : For each f(z) € Ap, and for eachpair of positive integer s r
and /, the séquence (2.5) can be bounded in at most r + / — 1 distinct points in
\z\> p1 + ilM-

3. PROOF OF THEOREM 1

With the notations from Section 2, we begin with the following resuit which,
for r = 1, reduces to Lemma 1 of [4],

oo

LEMMA 1 : If f(z) := £ ak z
k is an element of At C0"^, then for each

k=o
positive integer l,

L £ akz
k). (3.1)

\ k=(r+î-l)n /

Proof : As hrn=i(z ; ƒ) of (2.1) is necessarily a linear operator which repro-
duces all polynomials of degree at most rn — 1, then

Kn-l(Z'> f) ~ Kn-AZ\_ Z Ok*\ = K*-AZ'> S akzk

( rn-1 \

k=0 /
k^rn

V /i ^^ j_ V V /i //? Z'"* rrk+ (r + j— l)n\
~~ La "-k * ' Z J Z^ **fc+(r + j - l ) n "rn-lA* > * ^ •

Jt=O j = l k=0

It is known (cf. [1, eq. (4.4)]) that

h ( z - z
k + (r + J - 1 ) n ' ) — 7 * R f z " ^ f o r 7 — 1 2 T ^ ^

where P7>(z) is defined in (2.3). Inserting the above identity into the previous
display gives, with the définition of Qrn-U(z',f) in (2.2), the desired result
of (3.1). •

Szabados [4] has pointed out that his special case r = 1 of Lemma 1 gives
an elementary proof of Theorem A. We remark that Lemma 1 similarly
gives an elementary proof of Theorem C. As its proof foliows along the lines
of the proof of Theorem 1, we omit the details.

Next, as P7>(z) from (2.3), is in rcr_ls we can write

v = 0
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where evidently

W f + i ' l)Ç) «» »-ai...,r-l. (3.4,

LEMMA 2 : The polynomials

c (x) - ? l - ï f ( ) ( ) = ? ( i y
C-v,W-Lvl 1) ^ * j y Ly( V (fe-v)!v!

(3.5)

= 0,1,..., r — 1, farm a Lagrangian basis for Kr_ l3 i.e.Jor any pr^ ^{x) e nr_1,

Pr-i(x) = Ï r̂-iO* + 1 - r) C ; » , /or ö// x . (3.6)

In particular, choosing pr = 1(x) = 1 m (3.5) gf

1 = r £ Cv,r(A. + l) for any integers X and l. (3.7)
v = 0

: It is evident from (3.5) that

1 - r) = *(* - 1) - (x - v + 1) x

. (3.8)

As the multiplier x(x— 1)... (x—(v— 1)) in (3.8) vanishes for x = 0, 1,..., v— 1,
then Cvr0* + 1 - r) = 0 for ; = 0, 1,..., v - 1, while for x = v, (3.8) gives
Cvr(v + 1 - r) = 1. Similarly, for x =. v + / (where 1 < / < r - 1), the

quantity in braces in (3.8) reduces to j 1 + £ ( - l)k W

which is the binomial expansion of (1 — l)1 = 0. Thus, we have shown that

CV>P(/ + 1 - r) - 8;>v, for all j = 0, 1,..., r - 1 .

Consequently, { Cv?r(x) }v~o forms a Lagrangian basis for 7cP_ls from which
(3.6) and (3.7) directly follow. •

00

Proof of Theorem 1 : Let f(z) = J] ak 2
fc be any element in Ax C ( r~1 )

satisfying the hypothesis of Theorem 1, and let i? be any number satisfying

1 < R < p1 + <"r>. (3.9)

vol. 19, n° 4, 1985
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Now, the boundedness hypothesis of (2.5) implies, from (3.1) of Lemma 1,
that there is a constant M(R) such that

max
\z\=R

'<«-u Z akz*
Kk = (r + l-l)s

M(R) < oo ,

for any s ^ 1. In particular, choosing s — 2 n in (3.10) gives

max

Next. setting
2rn-l

k=0k=2(r + l-l)n

the bound from (3.11), along with Cauchy's formula, implies

\bk\ ^ M{R).R-\ k = 0,1,.., 2 m - 1.

(3.10)

(3.11)

(3.12)

(3.13)

Since the set of 2 nth roots of unity includes ail nth roots of unity, we obtain
{cf. (2.1)) the identity :

hjz ; g) = hrn_x{z ; h^.^z ; g)), (3.14)

for any g(z) e A1 C(r 1}. Choosing g(z) -.= ]T ak z
k, then g(z) is just

k=2(r + l-l)n

/(z), minus a polynomial, and is hence in A1 C
ir~1], for any n ^ 1. Using in

succession the identity of (3.14), the définition of (3.12), the fact that hrn_ x

is a ünear operator which reproauces poiynomiais in îErn_l9 and the identity
(3.2), we obtain the chain of equalities :

ft=2(r + I -

k = 0

rn—1

\ k = 2(r + l-

Y,1 bkZ
k) = '"f h*" + Y

fc=0 / k=0 k=Q

fc = 0

r — 1

Z* ) ) =

"

(3.15)
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Now, it follows from the définition in (2.3) that

I Px+i,r(z") | ^ 2r+\\ z |" + l ) ' " 1 for all z, and all X ^ 0 ,

from which it easily follows that
max | px+lfP(zn) | ^ 22r+xRnr, for all X ^ 0 . (3.16)

Applying the bounds of (3.16) and (3.13) to the terms of (3.15) gives, after
an easy calculation, that

max hrn_ iz ; Z flk^]k» 23r M(R) . (3.17)

This can be used as follows. By linearity again,

( ( r Z l ) n lz; Z
fc = (r + Z-l)n

- Kn-l\Z\

so that with (3.17) and (3.10) (for the case 5 = n),

/ 2(r + I - l )n- l \ I

l z l = j R | \ k=(r + l - l ) n / I

Using in succession again the linearity of the operator hrn-l9 the identity
of (3.2), and (3.4), we obtain

(
7'

n - 1 r + l-
7k\ — la ak

X=0
h (7-

-l)n nrn~ \\Z »

n-1 r + l-2

= "E Ï
v = 0

Cv,r(?c + [)ak+(r+x+l_1)n.

Applying Cauchy's formula and the bound of (3.18) to the above expression
gives

r + l-2

for all fc = 0, 1, „., n - 1 ; v = 0, 1,.., r - 1.

vol. 19, n° 4, 1985
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Suppose we set
r + l-2

for k = 0, 1, ..., n — 1 ; v = 0, 1,..., r — 1, where from (3.19),

, , (n23" + l)M(*)
R fc + vn

(3.20)

(3.21)

On summing both sides of (3.20) with respect to v and using the identify of
(3.7), we can write

ï l ) l

Lu ük+jn =

l l
so that

/ i fc + J7I

v = 0

r - 1

Applying the upper bound of (3.21) then gives

r(n23r + l)M(K)
(3.22)

for ail k = 0, 1, ..., n - 1, ail n ^ 1.
We now state a resuit which is implicit in the work of Szabados [4],

00

LEMMA 3 ([4]) : If g(z) = y ak z
k is an element of Ax C, and if, for each

fe =
positive integer s and each R with 1 < R < p'+1 , f/*ere zs a constant M(R)
such that

2 s - l

Z afc+«

then

(2n +

lim
«-•oo

= 0, 1,..., n - 1, a// n ^ 1,

(3.23)

: l . (3.24)

Lemma 3 can be applied as follows. As f(z)9 by hypothesis an element in
Ax C{r~1}, is necessarily in A1 C, and as (3.22) holds, then (3.24) of Lemma 3
with s — r + / — 1 gives that

lim I an |
1/M < 1 . (3.25)
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This last inequality ensures, as in [4], that f(z) can be analytically continued
from | z | ^ 1 into a larger circle. Let p > 1 be the maximal radius for which
f{z) is analytic in | z \ < 'p, so that f(z) has a singularity on | z \ = p. But,
by Theorem D, the séquence (2.6) can be bounded in at most r + / - 1 dis-
tinct points in I z I > p1 + (^>. As the hypothesis of Theorem 1 ensures that
this séquence is uniformly bounded on every clösed subset of | z \ < p1+( i / r ),
it is evident that p ^ p, showing that f(z) e Ap. G

To conclude, we mention some open questions. It would be interesting to
see if similar converse results hold for lacunary interpolation in the roots
of unity, or for Rivlin's case [2] of /2-convergence. Moreover, the above proof
of Theorem 1 dépends on the use of Saff and Varga's Theorem D. Is it possible
to prove Theorem 1 without the use of Theorem D ?
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