M2AN. Mathematical modelling and numerical analysis
 - Modélisation mathématique et analyse numérique

A. S. CAVARETTA
 A. Jr. Sharma
 R. S. VARGA
 Converse results in the Walsh theory of overconvergence

M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique, tome $19, \mathrm{n}^{\circ} 4$ (1985), p. 601-609
http://www.numdam.org/item?id=M2AN_1985__19_4_601_0
© AFCET, 1985, tous droits réservés.
L'accès aux archives de la revue «M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
(vol. 19, no 4, 1985, p. 601 à 609)

CONVERSE RESULTS IN THE WALSH THEORY OF OVERCONVERGENCE (*)

by A. S. Cavaretta (${ }^{1}$), Jr., A. Sharma (${ }^{2}$) and R. S. Varga (${ }^{1,3}$)

Résumé. - Récemment, J. Szabados a obtenu un nouveau théorème réciproque dans la théorie de la sur-convergence de Walsh, fondé sur l'Interpolation de Lagrange. Ici, nous développons un théorème réciproque similaire, fondé sur l'Interpolation d'Hermite, qui généralise le résultat de Szabados.

Abstract. - Recently, J. Szabados has obtained a new converse theorem in the Walsh overconvergence theory, based on Lagrange interpolation. Here, we similarly develop a related converse theorem, based on Hermite interpolation, which generalizes Szabados' result.

1. INTRODUCTION

Let A_{p} denote the collection of functions analytic in $|z|<\rho$, and, as usual, let π_{m} denote the collection of all complex polynomials of degree at most m. For any $f(z) \in A_{\rho}$ with $\rho>1$, and for any positive integer n, let $L_{n-1}(z ; f)$ denote the Lagrange polynomial interpolant in π_{n-1} of $f(z)$ in the n-th roots of unity, i.e.,

$$
\begin{equation*}
L_{n-1}(\omega ; f)=f(\omega) \tag{1.1}
\end{equation*}
$$

where ω is any nth root of unity. With $f(z):=\sum_{k=0}^{\infty} a_{k} z^{k}$ in $|z|<\rho$, and for each positive integer l, set

$$
\begin{equation*}
Q_{n-1, l}(z ; f):=\sum_{j=0}^{l-1} \sum_{k=0}^{n-1} a_{k+j n} z^{k}, \tag{1.2}
\end{equation*}
$$

so that $Q_{n-1, l}(z ; f)$ is also an element of π_{n-1}. Then, the original and oft-cited
(*) Received in January 1985.
${ }^{1}$) Institute for Computational Mathematics, Kent State University, Kent, Ohio 44242, U.S.A.
$\left(^{2}\right)$ The work done by this author was performed at Kent State University, while he was on leave from The University of Alberta.
$\left({ }^{3}\right)$ Research supported by the Air Force Office of Scientific Research, and by the Department of Energy.

[^0]beautiful result of J. L. Walsh [6, p. 153] on overconvergence is the case $l=1$ of
Theorem $\mathrm{A}([1]):$ For any $f(z) \in A_{\rho}$ with $\rho>1$, and for any positive integer l,
\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{L_{n-1}(z ; f)-Q_{n-1, l}(z ; f)\right\}=0, \quad \text { for all } \quad|z|<\rho^{l+1} \tag{1.3}
\end{equation*}
$$

\]

the convergence being uniform and geometric on any closed subset of $|z|<\rho^{l+1}$. Moreover, the result is best possible (in the sense that (1.3) is not valid at each point of $|z|=\rho^{l+1}$ for all $f(z)$ in $\left.A_{\rho}\right)$.

Now Theorem A, in the terminology of approximation theory, is a direct theorem in the Walsh overconvergence theory, in that the assumption $f(z) \in A_{\rho}$ leads to the overconvergence result of (1.3). Recently, Szabados [4] obtained the following interesting converse theorem to Theorem A. For notation, let $A_{1} C$ denote the collection of all $f(z)$ in A_{1} which are continuous on $|z|=1$.

Theorem B ([4]) : Assume that $f(z) \in A_{1} C$. If $\rho>1$, if l is a positive integer, and if the sequence

$$
\begin{equation*}
\left\{L_{n-1}(z ; f)-Q_{n-1, l}(z ; f)\right\}_{n=1}^{\infty} \tag{1.4}
\end{equation*}
$$

is uniformly bounded on every closed subset of $|z|<\rho^{l+1}$, then $f(z) \in A_{\rho}$.
It may be asked if the conclusion of Theorem \mathbf{B} (namely, that $f(z) \in A_{\rho}$) is best possible, i.e., with the hypothesis of Theorem B , could $f(z) \in A_{\rho^{\prime}}$ where $\rho^{\prime}>\rho$, in general ? On considering the particular function $\hat{f}(z):=(\rho-z)^{-1}$ which, with (1.3) satisfies the hypothesis of Theorem B, one sees that $\hat{f}(z)$ is an clement of A_{ρ}, but is ciearly not an eiement of $A_{\rho^{\prime}}$ for any $\rho^{\prime}>\rho$. In this sense, Theorem B is best possible, as was remarked by Szabados [4].

There are now many known direct theorems in the Walsh overconvergence theory on the difference of interpolating polynomials (cf. [1], Rivlin [2], [5, chap. 4]). It is natural to ask if there are similar converse theorems which complement Szabados' Theorem B. Here, we show that such a converse theorem can be similarly derived for Hermite polynomial interpolation.

2. STATEMENT OF A NEW RESULT.

We first state a direct theorem for Hermite interpolation in the Walsh overconvergence theory. To fix notations, for any $f(z) \in A_{\rho}$ with $\rho>1$, for a fixed positive integer r, and for every positive integer n, let $h_{r n}(z ; f)$ denote the Hermite polynomial interpolant in $\pi_{r n-1}$ of $f, f^{\prime}, \ldots, f^{(r-1)}$ in the nth roots of unity, i.e.,

$$
\begin{equation*}
h_{r n-1}^{(j)}(\omega ; f)=f^{(j)}(\omega), \quad j=0,1, \ldots, r-1 \tag{2.1}
\end{equation*}
$$

M^{2} AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis
where ω is any nth root of unity. Again, with $f(z):=\sum_{k=0}^{\infty} a_{k} z^{k}$ in $|z|<\rho$, and for any positive integer l, set

$$
\begin{equation*}
\tilde{Q}_{r n-1, l}(z ; f):=\sum_{k=0}^{r n-1} a_{k} z^{k}+\sum_{j=1}^{l-1} \beta_{j, r}\left(z^{n}\right) \sum_{k=0}^{n-1} a_{k+(r+j-1) n} z^{k}, \tag{2.2}
\end{equation*}
$$

where (cf. [1])

$$
\begin{equation*}
\beta_{j, r}(z):=\sum_{k=0}^{r-1}\binom{r+j-1}{k}(z-1)^{k}, \quad j=1,2, \ldots \tag{2.3}
\end{equation*}
$$

and where the last sum in (2.2) is defined here, and subsequently, to be zero when $l=1$. Note that $\tilde{Q}_{r n-1, l}(z)$ is also in $\pi_{r n-1}$. With these notations, a direct theorem for Hermite interpolation in the Walsh overconvergence theory is

Theorem C ([1]): For any $f(z) \in A_{\rho}$ with $\rho>1$, and for any positive integers r and l,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{h_{r n-1}(z ; f)-\tilde{Q}_{r n-1, l}(z ; f)\right\}=0, \text { for all }|z|<\rho^{1+(l / r)} \tag{2.4}
\end{equation*}
$$

the convergence being uniform and geometric on any closed subset of $|z|<\rho^{1+(l / r)}$. Moreover, the result is best possible.

A new result, a converse result to Theorem C, is the following. For notation, for each positive integer r, let $A_{1} C^{(r-1)}$ denote the collection of all $f(z)$ in A_{1} for which $f(z), f^{\prime}(z), \ldots$, and $f^{(r-1)}(z)$ are all continuous on $|z|=1$. For any $f(z) \in A_{1} C^{(r-1)}$ and for any $n \geqslant 1$, it is evident that the interpolatory polynomials $h_{r n-1}(z ; f)$ and $\widetilde{Q}_{r n-1, l}(z ; f)$ of (2.1)-(2.2) are well-defined.

Theorem 1 : Assume that $f(z) \in A_{1} C^{(r-1)}$. If $\rho>1$, if l is a positive integer, and if the sequence

$$
\begin{equation*}
\left\{h_{r n-1}(z ; f)-\tilde{Q}_{r n-1, l}(z ; f)\right\}_{n=1}^{\infty} \tag{2.5}
\end{equation*}
$$

is uniformly bounded on every closed subset of $|z|<\rho^{1+(l / r)}$, then $f(z) \in A_{\rho}$.
As the special case $r=1$ of Theorem 1 reduces to Szabados' Theorem B, we remark that Theorem 1 then generalizes Theorem B.

The proof of Theorem 1 will be given in Section 3. Because it is needed in the proof of Theorem 1, we state, as in Theorem D below, a recent related result of Saff and Varga [3, theorem 2] on Hermite interpolation in the Walsh overconvergence theory.

ThEOREM D ([3]): For each $f(z) \in A_{\rho}$, and for each pair of positive integers r and l, the sequence (2.5) can be bounded in at most $r+l-1$ distinct points in $|z|>\rho^{1+(l / r)}$.

3. PROOF OF THEOREM 1

With the notations from Section 2, we begin with the following result which, for $r=1$, reduces to Lemma 1 of [4].

Lemma $1:$ If $f(z):=\sum_{k=0}^{\infty} a_{k} z^{k}$ is an element of $A_{1} C^{(r-1)}$, then for each positive integer l,

$$
\begin{equation*}
h_{r n-1}(z ; f)-\tilde{Q}_{r n-1, l}(z ; f)=h_{r n-1}\left(z ; \sum_{k=(r+l-1) n}^{\infty} a_{k} z^{k}\right) \tag{3.1}
\end{equation*}
$$

Proof : As $h_{r n-1}(z ; f)$ of (2.1) is necessarily a linear operator which reproduces all polynomials of degree at most $r n-1$, then

$$
\begin{aligned}
h_{r n-1}(z ; f)-h_{r n-1}(z ; & \left.\sum_{k=(r+l-1) n}^{\infty} a_{k} z^{k}\right)=h_{r n-1}\left(z ; \sum_{k=0}^{(r+l-1) n-1} a_{k} z^{k}\right) \\
& =h_{r n-1}\left(z ; \sum_{k=0}^{r n-1} a_{k} z^{k}\right)+h_{r n-1}\left(z ; \sum_{k=r n}^{(r+l-1) n-1} a_{k} z^{k}\right) \\
& =\sum_{k=0}^{r n-1} a_{k} z^{k}+\sum_{k=r n}^{(r+l-1) n-1} a_{k} h_{r n-1}\left(z ; z^{k}\right) \\
& =\sum_{k=0}^{r n-1} a_{k} z^{k}+\sum_{j=1}^{l-1} \sum_{k=0}^{n-1} a_{k+(r+j-1) n} h_{r n-1}\left(z ; z^{k+(r+j-1) n}\right) .
\end{aligned}
$$

It is known (cf. [1, eq. (4.4)]) that

$$
\begin{equation*}
h_{r n-1}\left(z ; z^{k+(r+j-1) n}\right)=z^{k} \beta_{j, r}\left(z^{n}\right), \quad \text { for } \quad j=1,2, \ldots, \tag{3.2}
\end{equation*}
$$

where $\beta_{j, r}(z)$ is defined in (2.3). Inserting the above identity into the previous display gives, with the definition of $\widetilde{Q}_{r n-1, l}(z ; f)$ in (2.2), the desired result of (3.1).

Szabados [4] has pointed out that his special case $r=1$ of Lemma 1 gives an elementary proof of Theorem A. We remark that Lemma 1 similarly gives an elementary proof of Theorem C. As its proof follows along the lines of the proof of Theorem 1, we omit the details.

Next, as $\beta_{j, r}(z)$ from (2.3), is in π_{r-1}, we can write

$$
\begin{equation*}
\beta_{j, r}(z):=\sum_{v=0}^{r-1} C_{v, r}(j) z^{v}, \tag{3.3}
\end{equation*}
$$

where evidently

$$
\begin{equation*}
C_{\mathrm{v}, \mathrm{r}}(j):=\sum_{k=v}^{r-1}(-1)^{k-v}\binom{r+j-1}{k}\binom{k}{v}, \quad \text { for } \quad v=0,1, \ldots, r-1 \tag{3.4}
\end{equation*}
$$

Lemma 2 : The polynomials
$C_{v, r}(x):=\sum_{k=v}^{r-1}(-1)^{k-v}\binom{x+r-1}{k}\binom{k}{v}=\sum_{k=v}^{r-1}(-1)^{k-v} \frac{(x+r-1) \cdots(x+r-k)}{(k-v)!v!}$,
for $v=0,1, \ldots, r-1$, form a Lagrangian basis for π_{r-1}, i.e., for any $p_{r-1}(x) \in \pi_{r-1}$,

$$
\begin{equation*}
p_{r-1}(x) \equiv \sum_{j=0}^{r-1} p_{r-1}(j+1-r) C_{j, r}(x), \quad \text { for all } \quad x \tag{3.6}
\end{equation*}
$$

In particular, choosing $p_{r-1}(x) \equiv 1$ in (3.5) gives

$$
\begin{equation*}
1=\sum_{v=0}^{r-1} C_{v, r}(\lambda+l) \quad \text { for any integers } \lambda \text { and } l \tag{3.7}
\end{equation*}
$$

Proof : It is evident from (3.5) that

$$
\begin{align*}
& C_{v, r}(x+1-r)=\frac{x(x-1) \cdots(x-v+1)}{v!} \times \\
& \quad \times\left\{1+\sum_{k=1}^{r-v-1}(-1)^{k} \frac{(x-v)(x-v-1) \ldots(x-k-v+1)}{k!}\right\} \tag{3.8}
\end{align*}
$$

As the multiplier $x(x-1) \ldots(x-(v-1))$ in (3.8) vanishes for $x=0,1, \ldots, v-1$, then $C_{v, r}(j+1-r)=0$ for $j=0,1, \ldots, v-1$, while for $x=v,(3.8)$ gives $C_{v, r}(v+1-r)=1$. Similarly, for $x=v+l$ (where $1 \leqslant l \leqslant r-1$), the quantity in braces in (3.8) reduces to $\left\{1+\sum_{k=1}^{l}(-1)^{k} \frac{l(l-1) \ldots(l-(k-1))}{k!}\right\}$, which is the binomial expansion of $(1-1)^{l}=0$. Thus, we have shown that

$$
C_{\mathrm{v}, r}(j+1-r)=\delta_{j, v}, \quad \text { for all } j=0,1, \ldots, r-1
$$

Consequently, $\left\{C_{v, r}(x)\right\}_{v=0}^{r-1}$ forms a Lagrangian basis for π_{r-1}, from which (3.6) and (3.7) directly follow.

Proof of Theorem 1 : Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be any element in $A_{1} C^{(r-1)}$ satisfying the hypothesis of Theorem 1 , and let R be any number satisfying

$$
\begin{equation*}
1<R<\rho^{1+(l / r)} \tag{3.9}
\end{equation*}
$$

vol. $19, n^{\circ} 4,1985$

Now, the boundedness hypothesis of (2.5) implies, from (3.1) of Lemma 1, that there is a constant $M(R)$ such that

$$
\begin{equation*}
\max _{|z|=R}\left|h_{r s-1}\left(\sum_{k=(r+l-1) s}^{\infty} a_{k} z^{k}\right)\right| \leqslant M(R)<\infty, \tag{3.10}
\end{equation*}
$$

for any $s \geqslant 1$. In particular, choosing $s=2 n$ in (3.10) gives

$$
\begin{equation*}
\max _{|z|=R}\left|h_{2 r n-1}\left(z ; \sum_{k=2(r+l-1) n} a_{k} z^{k}\right)\right| \leqslant M(R) . \tag{3.11}
\end{equation*}
$$

Next. setting

$$
\begin{equation*}
h_{2 r n-1}\left(z ; \sum_{k=2(r+l-1) n}^{\infty} a_{k} z^{k}\right):=\sum_{k=0}^{2 r n-1} b_{k} z^{k}, \tag{3.12}
\end{equation*}
$$

the bound from (3.11), along with Cauchy's formula, implies

$$
\begin{equation*}
\left|b_{k}\right| \leqslant M(R) \cdot R^{-k}, \quad k=0,1, \ldots, 2 r n-1 . \tag{3.13}
\end{equation*}
$$

Since the set of $2 n$th roots of unity includes all nth roots of unity, we obtain (cf. (2.1)) the identity :

$$
\begin{equation*}
h_{r n}(z ; g)=h_{r n-1}\left(z ; h_{2 r n-1}(z ; g)\right), \tag{3.14}
\end{equation*}
$$

for any $g(z) \in A_{1} C^{(r-1)}$. Choosing $g(z):=\sum_{k=2(r+1-1) n}^{\infty} a_{k} z^{k}$, then $g(z)$ is just $f(z)$, minus a polynomial, and is hence in $A_{1} C^{(r-1)}$, for any $n \geqslant 1$. Using in succession the identity of (3.14), the definition of (3.12), the fact that $h_{r n-1}$ is a linear operator which reproduces polynomiais in $\pi_{r n-1}$, and the identity (3.2), we obtain the chain of equalities :

$$
\begin{align*}
h_{r n-1}(z ; & \left.\sum_{k=2(r+l-1) n}^{\infty} a_{k} z^{k}\right)=h_{r n-1}\left(z ; h_{2 r n-1}\left(z ; \sum_{k=2(r+l-1) n}^{\infty} a_{k} z^{k}\right)\right)= \\
& =h_{r n-1}\left(z ; \sum_{k=0}^{2 r n-1} b_{k} z^{k}\right)=\sum_{k=0}^{r n-1} b_{k} z^{k}+\sum_{k=0}^{r n-1} b_{k+r n} h_{r n-1}\left(z ; z^{k+r n}\right) \\
& =\sum_{k=0}^{r n-1} b_{k} z^{k}+\sum_{k=0}^{n-1} \sum_{\lambda=0}^{r-1} b_{k+(r+\lambda) n} h_{r n-1}\left(z ; z^{k+(r+\lambda) n}\right) \\
& =\sum_{k=0}^{r n-1} b_{k} z^{k}+\sum_{\lambda=0}^{r-1} \beta_{\lambda+1, r}\left(z^{n}\right) \sum_{k=0}^{n-1} b_{k+(r+\lambda) n} z^{k}, \quad \text { i.e. }, \\
h_{r n-1}(z ; & \left.\sum_{k=2(r+l-1) n}^{\infty} a_{k} z^{k}\right)=\sum_{k=0}^{r n-1} b_{k} z^{k}+\sum_{\lambda=0}^{r-1} \beta_{\lambda+1, r}\left(z^{n}\right) \sum_{k=0}^{n-1} b_{k+(r+\lambda) n} z^{k} . \tag{3.15}
\end{align*}
$$

Now, it follows from the definition in (2.3) that

$$
\left|\beta_{\lambda+1, r}\left(z^{n}\right)\right| \leqslant 2^{r+\lambda}\left(|z|^{n}+1\right)^{r-1} \quad \text { for all } \quad z, \quad \text { and all } \lambda \geqslant 0
$$

from which it easily follows that

$$
\begin{equation*}
\max _{|z|=R}\left|\beta_{\lambda+1, r}\left(z^{n}\right)\right| \leqslant 2^{2 r+\lambda} R^{n r}, \text { for all } \lambda \geqslant 0 \tag{3.16}
\end{equation*}
$$

Applying the bounds of (3.16) and (3.13) to the terms of (3.15) gives, after an easy calculation, that

$$
\begin{equation*}
\max _{|z|=R}\left|h_{r n-1}\left(z ; \sum_{k=2(r+l-1) n}^{\infty} a_{k} z^{k}\right)\right| \leqslant n 2^{3 r} M(R) . \tag{3.17}
\end{equation*}
$$

This can be used as follows. By linearity again,

$$
\begin{aligned}
& h_{r n-1}\left(z ; \sum_{k=(r+l-1) n}^{2(r+l-1) n-1} a_{k} z^{k}\right)=h_{r n-1}\left(z ; \sum_{k=(r+l-1) n}^{\infty} a_{k} z^{k}\right)- \\
&-h_{r n-1}\left(z ; \sum_{k=2(r+l-1) n}^{\infty} a_{k} z^{k}\right),
\end{aligned}
$$

so that with (3.17) and (3.10) (for the case $s=n$),

$$
\begin{equation*}
\max _{|z|=R}\left|h_{r n-1}\left(z ; \sum_{k=(r+l-1) n}^{2(r+l-1) n-1} a_{k} z^{k}\right)\right| \leqslant\left(n 2^{3 r}+1\right) M(R) \tag{3.18}
\end{equation*}
$$

Using in succession again the linearity of the operator $h_{r n-1}$, the identity of (3.2), and (3.4), we obtain

$$
\begin{aligned}
h_{r n-1}\left(z ; \sum_{k=(r+l-1) n}^{2(r+l-1) n-1} a_{k} z^{k}\right)= & \sum_{k=0}^{n-1} \sum_{\lambda=0}^{r+l-2} a_{k+(r+\lambda+l-1) n} h_{r n-1}\left(z ; z^{k+(r+\lambda+l-1) n}\right) \\
& =\sum_{k=0}^{n-1} \sum_{\lambda=0}^{r+l-2} a_{k+(r+\lambda+l-1) n} z^{k} \beta_{l+\lambda}\left(z^{n}\right) \\
& =\sum_{k=0}^{n-1} \sum_{v=0}^{r-1} z^{k+v n} \sum_{\lambda=0}^{r+l-2} C_{v, r}(\lambda+l) a_{k+(r+\lambda+l-1) n} .
\end{aligned}
$$

Applying Cauchy's formula and the bound of (3.18) to the above expression gives

$$
\begin{equation*}
\left|\sum_{\lambda=0}^{r+l-2} C_{v, r}(\lambda+l) a_{k+(r+\lambda+l-1) n}\right| \leqslant \frac{\left(n 2^{3 r}+1\right) M(R)}{R^{k+v n}} \tag{3.19}
\end{equation*}
$$

for all $k=0,1, \ldots, n-1 ; v=0,1, \ldots, r-1$.
vol. $19, n^{\circ} 4,1985$

Suppose we set

$$
\begin{equation*}
\sum_{\lambda=0}^{r+l-2} C_{v, r}(\lambda+l) a_{k+(r+\lambda+l-1) n}:=\mu_{k, v, n} \tag{3.20}
\end{equation*}
$$

for $k=0,1, \ldots, n-1 ; v=0,1, \ldots, r-1$, where from (3.19),

$$
\begin{equation*}
\left|\mu_{k, v, n}\right| \leqslant \frac{\left(n 2^{3 r}+1\right) M(R)}{R^{k+v n}} \tag{3.21}
\end{equation*}
$$

On summing both sides of (3.20) with respect to v and using the identify of (3.7), we can write

$$
\sum_{j=r+l-1}^{2(r+l-1)-1} a_{k+j n}=\sum_{v=0}^{r-1} \mu_{k, v, n},
$$

so that

$$
\left|\sum_{j=r+l-1}^{2(r+l-1)-1} a_{k+j n}\right| \leqslant \sum_{v=0}^{r-1}\left|\mu_{k, v, n}\right|
$$

Applying the upper bound of (3.21) then gives

$$
\begin{equation*}
\left|\sum_{j=r+l-1}^{2(r+l-1)-1} a_{k+j n}\right| \leqslant \frac{r\left(n 2^{3 r}+1\right) M(R)}{R^{k}} \tag{3.22}
\end{equation*}
$$

for all $k=0,1, \ldots, n-1$, all $n \geqslant 1$.
We now state a result which is implicit in the work of Szabados [4].
Lemma 3 ([4]): If $g(z)=\sum_{k=0}^{\infty} \alpha_{k} z^{k}$ is an element of $A_{1} C$, and if, for each positive integer s and each R with $1<R<\rho^{l+1}$, there is a constant $M(R)$ such that

$$
\begin{equation*}
\left|\sum_{j=s}^{2 s-1} \alpha_{k+j n}\right| \leqslant \frac{(2 n+1) M(R)}{R^{k}}, \text { for all } k=0,1, \ldots, n-1, \text { all } n \geqslant 1 \tag{3.23}
\end{equation*}
$$

then

$$
\varlimsup_{n \rightarrow \infty}\left|\alpha_{n}\right|^{1 / n} \leqslant\left\{\begin{array}{ll}
R^{-1 / 2}, & \text { if } s=1 \tag{3.24}\\
R^{-\left(3 s^{2}+1\right)}, & \text { if } \quad s>1
\end{array}\right\}<1
$$

Lemma 3 can be applied as follows. As $f(z)$, by hypothesis an element in $A_{1} C^{(r-1)}$, is necessarily in $A_{1} C$, and as (3.22) holds, then (3.24) of Lemma 3 with $s=r+l-1$ gives that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}<1 \tag{3.25}
\end{equation*}
$$

This last inequality ensures, as in [4], that $f(z)$ can be analytically continued from $|z| \leqslant 1$ into a larger circle. Let $\bar{\rho}>1$ be the maximal radius for which $f(z)$ is analytic in $|z|<\bar{\rho}$, so that $f(z)$ has a singularity on $|z|=\bar{\rho}$. But, by Theorem D , the sequence (2.6) can be bounded in at most $r+l-1$ distinct points in $|z|>\bar{\rho}^{1+(l / r)}$. As the hypothesis of Theorem 1 ensures that this sequence is uniformly bounded on every closed subset of $|z|<\rho^{1+(l / r)}$, it is evident that $\rho \leqslant \bar{\rho}$, showing that $f(z) \in A_{\rho}$.

To conclude, we mention some open questions. It would be interesting to see if similar converse results hold for lacunary interpolation in the roots of unity, or for Rivlin's case [2] of l_{2}-convergence. Moreover, the above proof of Theorem 1 depends on the use of Saff and Varga's Theorem D. Is it possible to prove Theorem 1 without the use of Theorem D ?

REFERENCES

[1] A. S. Cavaretta, Jr., A. Sharma and R. S. Varga, An extension of a theorem of J. L. Walsh, Resultate der Mathematik 3 (1980), 155-191.
[2] T. J. Rivlin, On Walsh equiconvergence, J. Approximation Theory 36 (1982), 334-345.
[3] E. B. Saff and R. S. Varga, A note on the sharpness of J. L. Walsh's Theorem and its extensions for interpolation in the roots of unity, Acta Math. Hung. 43 (1983), 371377.
[4] J. Szabados, Converse results in the theory of overconvergence of complex interpolating polynomials, Analysis 2 (1982), 267-280.
[5] R. S. Varga, Topics in Polynomial and Rational Interpolation and Approximation, University of Montreal Press, 1982.
[6] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloquium Publications Volume XX, Providence, RI, fifth edition, 1969.

[^0]: M^{2} AN Modélisation mathématique et Analyse numérique 0399-0516/85/04/601/9/\$2,90 Mathematical Modelling and Numerical Analysis (C) AFCET-Gauthier-Villars

