Upstream weighting and mixed finite elements in the simulation of miscible displacements
ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 3, pp. 443-460.
@article{M2AN_1985__19_3_443_0,
     author = {Jaffre, J\'er\^ome and Roberts, Jean E.},
     title = {Upstream weighting and mixed finite elements in the simulation of miscible displacements},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {443--460},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {19},
     number = {3},
     year = {1985},
     mrnumber = {807326},
     zbl = {0568.76096},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1985__19_3_443_0/}
}
TY  - JOUR
AU  - Jaffre, Jérôme
AU  - Roberts, Jean E.
TI  - Upstream weighting and mixed finite elements in the simulation of miscible displacements
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1985
SP  - 443
EP  - 460
VL  - 19
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1985__19_3_443_0/
LA  - en
ID  - M2AN_1985__19_3_443_0
ER  - 
%0 Journal Article
%A Jaffre, Jérôme
%A Roberts, Jean E.
%T Upstream weighting and mixed finite elements in the simulation of miscible displacements
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1985
%P 443-460
%V 19
%N 3
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1985__19_3_443_0/
%G en
%F M2AN_1985__19_3_443_0
Jaffre, Jérôme; Roberts, Jean E. Upstream weighting and mixed finite elements in the simulation of miscible displacements. ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 3, pp. 443-460. http://www.numdam.org/item/M2AN_1985__19_3_443_0/

1. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problem arising from Lagrangien multipliers. R.A.I.R.O., Anal. Numér. 2 (1974), pp. 129-151 | Numdam | MR | Zbl

2. G. Chavent, G. Cohen, M. Dupuy, J Jaffre, I. Ribera, Simulation of two dimensional water flooding using mixed finite elements, SPEJ. 24 (1984), pp. 382-390.

3. J. Douglas Jr., R. E. Ewing, M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O., Anal. Numér. 17 (1983), pp. 17-33. | Numdam | MR | Zbl

4. J. Douglas Jr., J. E. Roberts, Numerical methods for a model for compressible miscible displacement in porous media, Math. Comp. 41 (1983), pp. 441-459. | MR | Zbl

5. R. E. Ewing, M. F. Wheeler, Galerkin methods for miscible displacement problem in porous media, SIAM J. Numér. Anal. 17 (1980), pp. 351-365. | MR | Zbl

6. M. Fortin, Résolution numérique des équations de Navier Stokes par des éléments finis du type mixte, Rapport INRIA n° 184, INRIA Le Chesnay (1976).

7. J Jaffre, Éléments finis mixtes et décentrage pour les équations de diffusion-convection, Calcolo 23 (1984), pp. 171-197. | MR | Zbl

8. P. Joly, La méthode des éléments finis mixtes appliquée au problème de diffusion-convection, Thèse de 3e cycle, Université Pierre-et-Marie Curie, Paris (1982).

9. C. Johnson, V. Thomée, Error estimates for some mixed finite element methods for parabolic type problems, R.A.I.R.O., Anal. Numér., 15 (1981), pp. 41-78. | Numdam | MR | Zbl

10. P Lesaint, P. A. Raviart, On a finite element method for solving the neutron transport equation. Mathematical Aspect of Finite Elements in Partial Differential Equations, Ed. Carl de Boor, Academic Press (1974), pp. 89-123. | MR | Zbl

11. P. A. Raviart, J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Eds. I. Galligani and E. Magenes, Lecture Notes in Mathematics 606, Springer Verlag (1977), pp. 292-315. | MR | Zbl

12. T. F. Russell, Finite elements with characteristics for two-component incompressible miscible displacement, 6th SPE Symposium on Reservoir Simulation, New Orléans, SPE 10500 (1982).

13. M. F. Wheeler, B. L. Darlow, Interior penalty Galerkin methods for miscible displacement problems in porous media, Computational Methods in Nonlinear Mechanics, Ed. J. T. Oden, North Holland (1980). | MR | Zbl