@article{M2AN_1985__19_3_429_0, author = {Funaro, Daniele}, title = {Analysis of the {Du} {Fort-Frankel} method for linear systems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {429--441}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {19}, number = {3}, year = {1985}, mrnumber = {807325}, zbl = {0578.65023}, language = {en}, url = {http://www.numdam.org/item/M2AN_1985__19_3_429_0/} }
TY - JOUR AU - Funaro, Daniele TI - Analysis of the Du Fort-Frankel method for linear systems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1985 SP - 429 EP - 441 VL - 19 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1985__19_3_429_0/ LA - en ID - M2AN_1985__19_3_429_0 ER -
%0 Journal Article %A Funaro, Daniele %T Analysis of the Du Fort-Frankel method for linear systems %J ESAIM: Modélisation mathématique et analyse numérique %D 1985 %P 429-441 %V 19 %N 3 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1985__19_3_429_0/ %G en %F M2AN_1985__19_3_429_0
Funaro, Daniele. Analysis of the Du Fort-Frankel method for linear systems. ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 3, pp. 429-441. http://www.numdam.org/item/M2AN_1985__19_3_429_0/
[1] Preconditioned Minimal Residual Methods for Chebyshev Spectral Calculations, ICASE Report 83-28. | Zbl
and ,[2] Generalized Du Fort-Frankel Methods for Parabolic Initial Boundary Value Problems, SIAM J. Numer. Anal., 13 (1976), pp. 129-144. | MR | Zbl
and ,[3] The Du Fort-Frankel Chebyshev Method for Parabolic Initial Boundary Value Problems, ICASE Report No. 83-84, December 4, 1980. | Zbl
and ,[4] Numerical Analysis of Spectral Methods-Theory and Applications, Régional Conference Series in Applied Mathematics, SIAM (Philadelphia) (1977). | MR | Zbl
and ,[5] Analysis of Numerical Methods, John Wiley & Sons, New York (1966). | MR | Zbl
and ,[6] Spectral Methods for Problems in Complex Geometries, J. Comput. Phys., 37 (1980), pp. 70-92. | MR | Zbl
,[7] Difference Methods for Initial Value Problems, John Wiley & Sons, New York (1967). | Zbl
and ,