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FINITE ELEMENT METHODS FOR COUPLED
THERMOELASTICITY AMD COUPLED

CONSOLIDATION OF CLAY (*)

by Alexander ZENISEK (*)

Commumcated by P G CIARLET

Abstract — Three hnear two-dimensional coupled problems are considered dynamical ihermo-
elasticity, quasistatical thermoelasticity and consolidation ofclay In thejïrst two cases an équation
parabolic with respect to the température T is coupled with a System of équations either hyperbolic
or elhptic with respect to the displacement vector u, in the third case an équation elliptic with respect
to the pressure T is coupled with a System elhptic with respect to the displacement vector u The pro-
blems are solved approximately using both tnangular and curved tnangular fimte éléments in the space
discretization and v-step Astable différence methods (v = 1 or 2) in the time discretization. The
effect ofnumencal intégration is also considered The resulting schemes are unconditionally stable

Resumé — Nous traitons trois problèmes linéaires en deux dimensions la thermoélasticité
dynamique, la thermoélasticité quasi statique et la consolidation de Vargile Dans les deux premiers
cas une équation parabolique par rapport à la température T est couplée avec un système adéquations
hyperboliques ou bien elliptiques par rapport au vecteur u des déplacements Dans le troisième cas,
une équation elliptique par rapport à la pression T est couplée avec un système elliptique par rapport
au vecteur u des déplacements Ces problèmes sont approchés en utilisant la méthode des éléments finis
avec les triangles rectihgnes ou curvilignes pour la discrétisation spatiale et les méthodes des diffé-
rences finis Astables a v pas (v = 1 ou 2) pour la discrétisation en temps Les schémes qui en résultent
sont inconditionnellement stables

1. FORMULATION OF THE PROBLEM

According to [2] the dynamical two-dimensional problem of coupled linear
thermoelasticity can be formulated in the following way : Let Q be a bounded
domain in the xv x2-plane with a sufficiently smooth boundary F. Find a
displacement vector n(xv x2, t) and a température T(xl9 x2, t) which satisfy the
following équations and boundary and initial conditions (for a greater sim-
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184 A. ZENISEK

plicity we restrict ourselves to the case of Dirichlet boundary conditions) :

T.n + Q = c x t + c2 ùltl in Q x (0, /*] (1)

alJtJ + Xl = c4 ux (i = 1, 2) in Q x (0, t*] (2)

r(x l s x2, t) | r = T(xv x2), t > 0 (3)

«,(*!, *2> 0 Ir = «>(*i» *2) 0' = 1» 2) , f > 0 (4)

cx T(xl9 x29 0) = cx T0(x19 x2), (xls x2) e Q (5)

u£xu x2, 0) = ul0(xv x2), (x15 x2) e O (1 = 1, 2) (6)

c 4 w t(^ l5 x2 ï 0) = c4 i?l0(JCi, ^ 2 ) . (*i> ^2) G Q 0" = !» 2 ) (7)

where
" v = DvJfoJu) - a(T - Tr) 6 J (8)

öu f c m = DJlkm = D t m i J (9)

£
yW = (»« + "J /2 (10)

O . j t m ^ ^ ^ ^ o ^ ^ V^ = ^ £ J R (11)

where (i0 = const > 0. A summation convention over a repeated subscript
is adopted. A comma is employed to dénote partial differentiation with respect
to spatial coordinates and a dot dénotes the derivative with respect to time t
Thus équation (1) is the coupled heat équation and équations (2) are Cauchy's
équations of equilibnum. The symbol Q dénotes a prescribed sufficiently
smooth rate of internai heat génération per unit volume, the symbols Xv X2

dénote prescribed sufficiently smooth components of body forces per unit
volume. The symbols cl5 c2, c4 are positive constants; c1 and c4 depend only
on the material of a considered body, c2 = c2 Tr where ~c2 is a positive constant
depending only on the material and Tr is a positive constant which has the
meaning of the température for which the material is stress-free. The fonctions
on the right-hand sides of relations (3)-(7) are prescribed sufficiently smooth
fonctions.

In relation (8) a is the coefficient of linear thermal expansion, hXJ is the
Kronecker delta and Dljkm are constants depending on the material only. We
shall consider isotropic materais only ; in this case

m §km = c3 6y , c3 = const > 0 . (12)

If we set c1 = c4 = 0, replace (6) by

«M(*I> *I> °) = 0 . (^i. x2) e Q (6*)

R A.I R O Analyse numénque/Numencal Analysis



COUPLED THERMOELASTICITY AND CONSOLIDATION OF CLAY 185

and define atJ by

^ = Z W * > ) ~ TbtJ (13)

then problem (l)-(4), (6*), (9)-(13) represents the two-dimensional problem of
coupled consolidation of clay in the case of incompressible pore water [1, 3, 9],
The symbol T has now the meaning of pore water pressure, the constant c2

dépends on the material only and 6 = 0. Numerical tests [9] show that the
hnear model (l)-(4), (6*), (9)-(ll), (13) gives satisfactory results. (Let us note that
a nonlmear elastoplastic model is studied in [8].)

Now we present a vanational formulation of our three problems. Before
doing it let us introducé some notation. By Hm(Q) we dénote the Sobolev space
of real functions which together with their generalized derivatives up to order m
inclusive are square integrable over Q. The inner product and the norm are
denoted by (.,-)m,n and || . ||mn, respectively. i/<J(Q) is the closure in the
/f1-norm of the set of infmitely differentiable functions having compact support
in Q . / / " 1 ^ ) is the space dual to H£(Q) (with dual norm). Cm(H\ÇÏ)) is the
space of continuous functions ƒ. [0, t*] -> Hk(ü) which have continuous
derivatives up to order m on [0, t*].L2(H\£ï)) is the space of strongly measu-
rable functions/: (0, t*) -> Hk(Q) such that

f
Jo

Multiplying équation (1) by w e HQ(Ü) and using Green's theorem we easily
find

D(T9 w) + ct(f, w)Qta + c2(ülV w)oa = (Q, w)0 a

VweffoHQXteCO,/*] (14)
where

D(v9w)= vtlwtldx9 (v,w)on= vwdx. (15)
J J

v9w)= vtlwtldx9 (v,w)on=
Jn Ja

Multiplying équation (8) or (13) by &tJ(y), where ve [^(Q)] 2 , integrating
over Q, using relations (2), (9), (10) and Green's theorem we find

«(«, v) + c4(ll, v)Ojft - c3(T - rr5 vtXa =

= (X,y)OtQ V V G ^ O H Q ) ] 2 , ïe(0,/*] (16)
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186 A. ZENiSEK

where

o(v,w)= DiJkmvÎJwKmdx9 (v,w)0|O= vtwtdx (17)
Jn Jn

andc3 = 1, Tr = 0 in the case of consolidation of clay.
Thus the variational formulation of problem ( 1 )-( 11) reads : Find a function 7

and a vector u which have the following properties :

a) T e L2(HHQ)), t e L2(H~\Q)) ;

b) u G L2([tf ^Q)]2), wM e L^/Z-^Q)), Ü G

c) the function T satisfies boundary condition (3) and the vector u satisfies
boundary conditions (4) in the sensé of traces ;

d) relations (14), (16) hold;

é) the function T satisfies initial condition (5) and the vector u satisfies initial
conditions (6), (7).

The remaining two variational formulations can be obtained from a)-é)
by means of the following rules : If c4 — 0 then we do not demand
ü e L2{[H-l(ÇÏ)]2) in b) and (7) m é) and replace (6) by (6*) in e). If moreover
c1 — 0 then we do not demand f e L2^'1 (Q)) in a) and (5) in e).

The uniqueness of the solutions of ail three variational problems can be
proved similarly as in [2, pp. 39-40], As to the existence of the solution see,
e.g., [7, 16] where some sufîicient conditions are presented.

From the point of view of applications it should be noted that it is permissible
in most thermal — stress problems to disregard the effects of both coupling
and inertia (see [2, pp. 41-61]). However, in the case of consolidation of clay
the coupling effect is not negligible.

2. FINITE ELEMENT SOLUTION

If the domain Q has not a polygonal boundary we approximate F piecewise
by arcs of degree n > 1 and dénote such a changed boundary by Th. The curve
X^h is the boundary of a domain Qh which is the approximation of Q. (If Q has
a polygonal boundary F we set (because of a uniform notation) Qh = Q and
Th = F.) Let us assume that Fis piecewise ofclass Cn + 1.

Let us triangulate the domain Qh. If Qh = Q then the triangulation xh is quite
arbitrary ; if Qh ^ Q then xh satisfies the following conditions : Each arc of
degree n is the curved side of one boundary triangle ; each boundary triangle
has only one side lying on Fh ; the interior triangles have only straight sides.

Let Vh and Wh dénote two finite element subspaces of C°(Qh) with the
following properties :

R.A.I.R.O. Analyse numérique/Numerical Analysis



COUPLED THERMOELASTÏCITY AND CONSOLIDATION OF CLAY 187

1. To every fonction v e Hn+1(Ü\ where Û 3 Q u Qh (h < h\ there exists
a fonction vmt e Vh, the interpolate of v, such that

II v - v"* \\hSÈh < C h " + 1 " ' II v \\n+ifi (j = 0, 1) (18)

where C is an absolute constant and h = max hK (K e xh\ hK being the diameter
of the triangle K. (We assume that the smallest angle of all triangles of all
triangulations xh is bounded away from zero.) Further, it holds

• i . ^ e V i , x V , 2
t t ^ V l - v 2 e V h 0 x V h 0 (19)

where the subsets Vh0, Vl
hu{i = 1, 2) of the space Vh are defined in the follo-

wing way :

Vk0 = {veVk:v = Qonrh}9 (20)

Vl
hu = {v€Vh:v=üronrh} 0 = 1 , 2 ) (21)

where w[nt is the finite element interpolation of the fonction üt appearing in (4).
(E.g., if the used finite éléments are of the Lagrange type then each curved side
of a curved boundary triangle has n -f 1 common points with F. The fonction
wjnt is uniquely determined on the curved side by the fonction values of wt at these
n + 1 points.)

2. To every fonction we HP + 1(Û\ where p < n, there exists a fonction
wint G Wfp the interpolate of w, such that

II w - wint | | j A < Ch>+1~' II w \\p+uù (j = 0, 1) (22)

with C an absolute constant. It holds

wv w2 e WhT => wt - w2 e Wh0 (23)

where the subsets Wh0 and WhT of the space Wh are defined in the following
way :

WM = {weWk:w = 0onrh}9 (24)

WhT = {weWh:w= T^onTh} (25)

where Tmt is the finite element interpolation of the fonction T appearing in (3).
As we want to approximate all terms on the right-hand side of (8) (or (13))

with the same accuracy we choose p = n — 1. (In applications we usually
have n = 2, p = 1 — see, e.g., [1, 9].) In the case of a polygonal boundary F
the construction of the spaces Vh and Wh is straightforward and we can choose

VOL 18, N° 2, 1984



188 A ZENÏSEK

the space Wh qui te independently on the space Vh. In the case of curved éléments
the choice of the space Vh détermines the choice of the space Wh.

We explain it in detail in the case n = 3 and show simultaneously that such
constructions are possible. Let us consider finite éléments of the Hermite type.
In this case the parametric équations of the curved side of a boundary triangle
are formed by cubic Hermite interpolation polynomials of the functions which
express parametrically the corresponding arc of the exact boundary F. (This
situation is described in [12, 13, 15] where all details concerning the construc-
tion of corresponding finite éléments can be found.) The ten parameters uni-
quely determining the function v(xv x2) on the curved triangle K are

2 ) a ü(P t ) , | a | ^ l , i = l,2,3;i;(P0) (26)

where Pv P2, P3 are the vertices of K and Po is the image of the point R0(lf3,
1/3) in the transformation

*i = *Î(Ç,,Ç2)> xx = x*{%v%2) (27)

which maps one-to-one the boundary triangle K onto the unit triangle Ko

lying in the plane £19 \2 and having the vertices /^(O, 0), R2(l, 0), R3(0, 1). For
this element the following interpolation theorem holds : If u e H\K) and

>,) = D« M ( P . ) , M ^ l , 1 = 1 , 2 , 3 ; v(P0) = u(P0)

t h e n

\\o-u \\uK ^ Ch*-> || u ||4>K (0 ^ j < 4) .

The same interpolation theorem holds for a polynomial of third degree
v(xv x2) which is uniquely determined on a triangle K with straight sides by
the parameters (26), Po being now the centre of gravity of K. Combining these
two types of finite éléments we obtain the space Vh with the interpolation
property (18).

Let F be of class C1. Then it follows from the construction of curved trian-
gular éléments that the subspace Vh0 c Vh consists of those functions veVh

for which

ÜCP,) = v^P) cos oc, + v2{P) sin oc, = 0 , P}eYh

where o, is the angle made by the x-axis and the tangent to the curve F at the
point Pj. (IfFispiecewiseofclassC1 and P, a corner ofr then ufPj) = u(1(Pj) =
vt2(Pj) - 0.) The subset Vl

hu(i = 1, 2) of Vh consists of those functions veVh

R A.I.R O. Analyse numénque/Numencal Analysis



COUPLED THERMOELASTICITY AND CONSOLIDATION OF CLAY 189

for which

v(Pj) = Ü^Pj), vtl(P;) cos ttj + vt2(Pj) sin dj = ü&Pj)

where Pj e Th and where «| is the tangent derivative of the fonction ü. on F.
It is clear that implication (19) is satisfied

Now we want to construct the finite element space Wh on the same trian-
gulation xh in the case p = 2. To this end, on the interior triangles which have
no common point with the boundary we choose quadratic polynomials
uniquely determined by function values prescribed at the vertices and at the
mid-points of the sides. On the boundary triangles, which have a cubic curved
side, we choose fonctions which are uniquely determined by parameters

2>B wCPJ, I « I < 1 , " W > " W , W(Ô23) (28)

where PL9 P29 P3 is a local notation of the vertices of a boundary triangle K
chosen in such a way that Pv P3 lie on F ; Ö23 is the rnid-point of the segment
P2 Pv If Kv K2 are two boundary triangles with a common vertex and the
local notation of the vertices of Kx has been chosen then we must choose the
local notation of the vertices of K2 in such a way that the common vertex
of Kl and K2 is denoted by the same symbol in both local notations. (This
implies a restriction on triangulations xh : the number of boundary triangles
must be even.)

The function w(xl9 x2) uniquely determined on K by parameters (28) is
defined in the following way : The function

"*($!, W = « 1 , til *îtëi> ^2)). (29)

where xf(^l5 £2), x|(^ l s E,2) are the same functions as in (27), is a quadratic
polynomial uniquely determined by the parameters

Da w*(Rt), | a | < 1 , w*(*2), w*(^3); w*(S23) (30)

where 523 = (1/2, 1/2). Parameters (30) are linear combinations of parameters
(28) and can be computed by means of (29) and the rule of differentiation of a
composite function.

It remains to define finite éléments on the interior triangles with one vertex
lying on F. If this vertex is the vertex Px of a boundary triangle then we choose
a quadratic polynomial uniquely determined by parameters (28), where P l 9 P2i

P3 dénote now vertices of the interior triangle and P1 lies on F. If the vertex
lying on F is the vertex P3 of a boundary triangle then we choose a quadratic
polynomial uniquely determined by function values prescribed at the vertices
and the mid-points of the sides of the interior triangle.

VOL. 1 8 , N ° 2 , 1984



190 A. ZENISEK

Combining triangular finite éléments just described we can construct the
finite dimensional space Wh. It is easy to see that Wh has the interpolation
property (22). The construction of the subsets Wh0> WhT with property (23) is
similar as in the case of the space Vh.

The constructions of the spaces Vh, Wh in the case of finite éléments of the
Lagrange type are simpler than in the preceding case. Thus we do not introducé
them.

In order to define the approximate solution of the variational problem à)-è)
let us introducé the bilinear forms

f f
Öh(v, w) = vt w . dx , (Ü, w)OfQli = vw dx ,

(v, w) = DUfem vu wkm dx, (v, w)OiQh = vt wt dx .

(31)

(32)

In the case of polygonal boundary ah(\, w) = a(v, w), etc.
In order to get numerical results in the case of a curved boundary F we appro-

ximate the intégrais appearing in (31), (32) by quadrature formulas with
intégration points lying in Q in the same way as in [5] or [10, 15]. Doing it we
obtain forms Dh{v, w\ (v, w\, ah(\, w) and(v, w)ft.

Let us choose an integer Mand set

At = t*/M9 tm = m At (m = 0, 1,..., M). (33)

If/ = f(xv x2, t) then the symbol ƒ" will dénote a function in two variables
xl5 x2 defined by the relation

ƒ» = f*(xl9 x2) = f(xl9 x2, m At) . (34)

Finally, we dénote

Af1 =fn+1 - ƒ", A2/" = A/"+1 - Af1. (35)

Now we can define the discrete problem for approximate solving our varia-
tional problem a)-é) :

Let v = 1 or 2 in the case c4 = 0 and v = 2 in the case c4 > 0. For each
m = 0, 1,..., M - vfindavectoru^+vG V\u x V\u and a function T%+v e WhT

such that

A f D * ( l 0
 P^

+ c2[ L ^ CV> w = Arf X pj Öm + J
5 w Vw e ^ h 0 , (36)

J=o A V-o y h

R.A.I.R.O. Analyse numérique/Numerical Analysis



COUPLED THERMOELASTICITY AND CONSOLIDATION OF CL A Y 191

P, 7T+ J - Tr,

+ c4(A2iC v)„ = At2[ £ Vj*m+i, v ) Vv e [Vh0]
2 (37)

with initial conditions (38), (39) in the case ct > 0, c4 > 0 :

< = <P r e. VI x Fft
2
u , T° = TT e ^ , (38)

u*1 - zapr e VI x F£,, TJ = Y^ e WhT , (39)

where the meaning of the symbols on the right-hand sides of (38), (39) is defined
in Remark 3. The coefficients a,, $j are defined in Remark 2. In the case of
consolidation of clay initial conditions reduce to

4ui = 0 • (40)

This restricts a choice of finite différence formulas.

Remark 1 : In (36) the symbols (y, w)* and (v, w)h ** dénote two approxima-
tions of (v, w)0 nh which are, in gênerai, different from (v, w)h — see Theorem 1.

Remark 2 : For v = 1 we have

a0 = - 1 , a t = 1 ; p0 = 6, p± = 1 - G (9 < 1/2) (41)

and for v = 2

a0 = - 1 + 0, ax = 1 - 2 G, a2 = 9, p0 = 1/2 - 1/2 9 + S,
Pi = 1/2 - 2 8, p2 = 1/2 0 + 8 (9 ^ 1/2) (42)

where 8 > 0 if cA = 0 and 8 ^ 0 if c4 > 0. In the case c4 = 0 relations (41)
and (42) define the coefficients of v-step ^4-stable methods (see [10, 14]). In the
case c4 > 0 relations (352) and (42) define the coefficients of the gênerai New-
mark method. In this case the P's are written usually in the form :

p o = l / 2 + p 2 - 0 , p , = 1 / 2 - 2 p2 + 0 , p2 > 1/2 9 . (43)

If we set 0 = 1/2 we obtain the special form of the Newmark method used, e.g.,
in [4] and [6].

In the case of consolidation of clay we shall use only two schemes : for v = 1
the Euler backward method (the special case of (41) with 0 = 0)

<xo= - 1, 04 = 1, Po = 0, p t = 1 (44)

VOL. 18, N° 2, 1984



192 A. ZENISEK

and for v = 2 the special case of (42) with 6 = 3/2, 5 = 1 / 4 :

oco = 1/2, 04 = - 2, a2 = 3/2 , p0 = px = 0 p2 = 1 . (45)

If we use the two-step method (45) we must compute u^ by means of the one-
step method (44). Let us note that in the case v = 2we could use ail schemes (42)
satisfying Po = 0.

Remark 3. The symbol Uopr dénotes a vector whose components approxi-
mates the right-hand sides ui0 of (6). The fonction T^r is an approximation of
the right-hand side of (5). If To = f on T then we usually define 7a

o
pr = Tg11

where TJJ1' is the interpolate of To in Wh. In the case c4 > 0 the function
Y(xv x2) is defined by

Y(xl9 x2) = T(xl9 x29 0) + Att(xl9 x29 0) (46)

where T(x 1 ,x 2 , 0) can be computed from équation (1) by means of initial
conditions (5), (7). Similarly we defme

or

z(x1? x2) = u(x19 x2, 0) + Atùix^ x2i 0) (47)

z(xl9 x2) = u(x l s x2î 0) -h At ù(x1, x29 0) + 1/2 At2 ü(x1? x2? 0) . (48)

(Définitions (47) and (48) correspond to the cases q = 1 and q = 2 from
Theorem 1, respectively.) The first two members on the right-hand sides of (47),
(48) are given by initial conditions (6), (7). The third member in (48) can be
computed from relations (2), (8), (10), (12) by means of initiai conditions (5), (6).
We defme UQPF and zapr to be the discrete Ritz approximations of u0 and z,
respectively. (In detail see Section 3.) This définition is a modification of the
définition of starting values from [6]. TaJ>r and Yapr can be defined similarly.

If we do not use the numerical intégration then we define Uopr and zapr to be
the Ritz approximations of u0 and z, respectively.

Remark 4 : In [4] the approximation of coupled linear thermoelasticity by
the finite element method is also studied. However, the authors restrict them-
selves to the case p = n = 1 ; they do not analyze the effect of numerical
intégration and consider the Newmark method only with 0 = 1/2.

3. ERROR ESTIMATES

In this section we prove the existence and uniqueness of the approximate
solution and establish the maximum rate of convergence. We shall start with
some définitions and lemmas.

R.A.I.R.O. Analyse numérique/Numerical Analysis



COUPLED THERMOELASTICITY AND CONSOLIDATION OF CLAY 193

The symbols f and ü will dénote the Calderon extensions of the exact
solution T and u, respectively. The function r| e WhT satisfying

£*(?-Ti ,w) = 0 V w e ^ 0 (49)

is called the Ritz approximation of the function T. The function r[d e WhT

satisfying

öfc(n* "0 = - (T,»> ")* Vw G ^ f tû (50)

is called the discrete Ritz approximation of the function f. The vector
r e F j u x V\u satisfying

3fc(fl-r,v) = 0 Vve[K„0]
2 (51)

is called the Ritz approximation of the vector ü. The vector xd e V\u x Vlu

satisfying

**('* v) = - (DüfaB fifk,mJ, i ^ Vv G [Vh0]
2 (52)

is called the discrete Ritz approximation of the vector ü.

LEMMA 1 : Let the boundary T of the domain Q be piecewise of class Cp + 1.
Let T(x, i) e HP + 3(Q\ t e [0, t*]. Then

II T - Ti \\JiQh < Ch*+x-> || T ||p + 3 jn 0' = 0, 1 ) , (53)

C being a constant independent on T, h and t. In addition, let quadrature formulas
on the unit triangle K0for calculation oftheforms Dh(v, w) and(v, w\ appearing
in (50) be ofdegree of précision d = max(l, 2p — 2). Then

II f ~ na llj.n* < Ch>+l-> || T | | p + 3 < n 0' - 0, 1) . (54)

LEMMA 2 : Let the boundary T of the domain Q be piecewise of class Cn+1. Let
n(x, t) G [Hn + i(Q)Y, t G [0, t*]. Then

\\u-r\\unht:Ch»\\u\\n + 1>ÇÎ (55)

C being a constant independent onu,h and t. In addition, let u(x, t) G \_Hn + 2(Q)]2,
/ G [0, t*] and let quadrature formulas on the unit triangle KQfor calculation of
theforms ah(y, w) and(\, w)h appearing in (52) be ofdegree of précision d= 2n — 2.
Then

l i Ö - r J 1 ) O h ^ C / * " | | u l | n + 2 j n . (56)

VOL. 18,N°2, 1984



194 A. ZENISEK

Lemma 1 is proved in [10, 11] in the case WhT = Wh0. The generalization
to the case WhT # Wh0 is not difficult. Lemma 2 is an immédiate conséquence
of the interpolation theorem (18), inequalities (67) and standard devices used
in the analysis of the effect of numerical intégration [5, 10, 11].

THEOREM 1 : Let c1 > 0, c4 > 0, p = n - 1 and the boundary Y of the

domain Q be piecewise ofclass Cn + l. Let

(57)

,2) (58)

Let quadrature formulas on the unit triangle KQ for calculation of the forms
Dh(v, w) andah(\, w) be ofdegree ofprécision 2p — 2 and2 n — 2, respectively,
let quadrature formulas on Kofor calculation of'the forms (v, w)h and(v, w)h be of
degree of précision 2 p = 2 n — 2, let the quadrature formula on K0for calcula-
tion oftheform (v, w)£ be of degree of précision 2p — 1 and let the quadrature

formula on Kofor calculation oftheform (v, w)** be ofdegree of précision 2 p — 1
andsuch that thefîrst inequality (68) holds. Let all weights of quadrature formulas
used for calculation oftheform (v, yt\ be positive. T hen for sufficiently small h
problem (36)-(39) has one and only one solution u™, T%(m = 2,..., M) and in the
case 8 > 0 (see (42)) thefollowing estimate holds :

II fm - 77 ||0>nh + || <r - op n 1 A < c

+ E (Ü e* IIOA + li e' llliOJ + Ar"1 il Ae° ||1A j (59)
7o J

where q = 2 for 6 = 1 / 2 anrf g = 1 for 0 > 1/2 âwd w/sere f/ze constant C does

not depend on At and h. The symbols e^ and&m are definedby the relations

em = r? - < , em = TIS1 - T : . (60)

7/2 addition, let us dénote

f m-m = ( ƒ » + / « - i ) / 2 . (61)

TTzen z« Âe ca.se 5 = 0, 0 = 1/2 the expression

II t~ - T? ||0>nh + || U-"-1'2 - n™-1'2 | | 1 A , (62)

where m = 2,..., M, is boundedby the right-handside of{59\
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Remark 5 : The following quadrature formulas of degree of précision 2p~ 1
guarantee the validity of the first inequality (68) : for p = 1 the formula

Jx
Uv*(R,) + v*(R2)

and for p = 2 the formula (4.L18) from [5].

Remark 6 : The norms appearing on the left-hand side of (59) are natural
norms in thermoelasticity : 1) in applications we need to know the values of T,
w- and utj ; 2) T and uitJ should be computed with the same accuracy.

THEOREM 2 : Letcl = c4 = 0,/> = « — 1 and the boundaryT of the domain Q
be piecewise of class Cn + X. Let

TeCl(Hn + 2(Q)), w . e C v + 1(if" + 2(Q)) 0 = 1 , 2 ) . (63)

Le/ 0 = 0 awrf /e/ the assumptions concerning the forms Dh(v, w\ ah(y, w),
(y, w)h, (v, w)h be t/ïe same as in Iheorem 1. Ihenjor sujjïciently small h probiem
(36), (37), (40) fes o«e and only one solution uj1, T^(m = 1,..., Af) and the
following estimate holds :

|| T TT II i [j ww m 11m j| ^ f"1 ƒ A #(v + l ) / 2 i Ln i II B 1 0 || h.n \ *~ 1/2 1

II i ~~ J / i llz2
 + H u ~ nh Ui,nh ^ c 1 A r + « + || u ||n + 2 j n " A ? )

(64)

where the constant C does not depend on At and h and the norm \\. ||,2 is defïnedby

I! f ||2 — Kf V1 || fm ]| 2 / ' A ^

m = l

Ifv=l then we use Eulefs backward formula (44); ifv = 2 then we use two-
step backward formula (45) for m = 2,..., M and one step formula (44) in the
first step.

Proof of theorems 1 and 2 : The assumptions of Theorems 1 and 2 and
Friedrichs' and Korn's inequalities imply for sufïïciently small h

C J w H ^ ^ D ^ w X C j l l w l l î ^ VweWh0 (66)

c i II w II O A < (*f, w)f * ^ C 2 || w ||^>nh Vw e Wh (68)
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where C1 and C2 are positive constants independent on h.

à) As relations (36), (37) represent for each m a System of linear algebraic
équations it is sufficient to prove the uniqueness of the approximate solution.
Owing to implications (19) and (23) it suffices to prove that the foliowing
homogeneous problem has only a trivial solution : Find a vector u£+ v e [Vh0]

2

and a function T^+ Ve Wh0 such that

A' Pv Dh(TZ+\ w) + c, av(T^\ w)** + c2 a X ; J \ W\ = 0 Vwe Wk0, (70)

At2 pv ak(fÇ
+v, v) + c4(nr\ v), - c3 At2 PV(7Tv , vu\ = 0 Vv e [VhOf . (71)

Let us set w = T%+v in (70) and v = u£+ v in (71), multiply équation (70) by
c3 At2 Pv) équation (71) by c2 otv, add up the obtained équations and use the
first inequalities (68), (69). We get

\ T- + v) + k2 ah(u™+\ u-+ v) ^ 0 (72)

where k1 > 0, k2 > 0. The first inequalities (66), (67) together with (72) imply
7 7 + v = 0, u£+ v = 0.

b) Let us set

s = u - r d , Ç = Î - T V (73)

Then, according to (60) and (73),

II fm - T% ||0 + || um - n» ||x < || Ç» ||0 + || sm |h + || em ||0 + || em ||A (74)

in the case of Theorem 1 and

\\T-Th \\l2 + || um - u» II, < 1 ^ ||/2 + || sm ||, + || e ||,2 + || em ||, (75)

in the case of Theorem 2. In (74), (75) and in what follows we write for simplicity
|| . \\k instead of || . \\krQh and (.,.)o instead of (.,-)o,oh- Lemmas 1 and 2 imply

Km l lo + i l s m l i i < ^ " > K l l l 2 + lls I B l l i^CA». (76)

Hère and in what follows C dénotes a constant not depending on h and At
and not necessarily the same in any two places. It remains to estimate the last
two terms on the right-hand sides of relations (74) and (75).
Let f, t and üi be the Calderon extensions of the functions T, T and ùi9

respectively. Let us define a function Q, an extension of Q, by

f,u-Ci T-c2uui +Q = 0 (xl9x2)eQ. (77)
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Let us multiply relation (36) by — 1 and to the both sides let us add the expres-
sion

A' DA X p, Ttf+> w ) + cx ( £ *j n ï + ^ H + <2 Z a7 CJ^ w • (78>

On the right-hand side of the obtained relation let us express the first term of
(78) by means of (50) and (77) ; in the last two terms of (78) let us express r\™+j

and rj t j by means of relations (73). As to the left-hand side of the obtained
relation let us simplify it by means of (60). Multiplying the resulting relation
by c3 we obtain :

VA

j=0 Jh

c, Aïiï è p, Qm+j, w\ - f t p, Qm+{ w

Vho (79)

where

j=o j=o

K = z (^ «r+j - A? Pj Sr+/) > pr = z ^ *rj*.

Let us define extensions X. (/ = 1, 2) of X. by

JV» ^,mj- - 3̂ ? , + ^ = c4 0, (xls x2) G Û (82)

where i ,̂ M; and f dénote the Calderon extensions of wf, üt and T, respectively.
(If (xl5 x2) e Q then (82) is identical with (2), where a^ is expressed by means of
(8), (10), (12).) Let us multiply (37) by - 1 and to the both sides let us add the
expression
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Let us simplify the left-hand side of the obtained relation by means of (60).
On the right-hand side let us express the first term of (83) by means of (52)
and (82) ; in the second term of (83) let us express r% by means of (73). Further,
let us add to the right-hand side zero in the form

_ _ +
7=0 /O \j=0 ' /O

to Pi iff+' - Tr, v^ J = 0, ve[F„0]2 . (84)

Multiplying the resulting relation by c2 At 2 we obtain

Pi em+J> v ) - C2 Ci(jto Pi £m+J'> "<.i

+ c2 c4 Ar2(A2 em, y\ = c2 c4

- c2 c4 Ar 2(A2sm, v)h + c2 c3( t p; ZT+\ vt\
Vo

P , ( o i ) 1

Vv E [Vh0]
2 (85)

_ j=0

where

ym = A2üm - At2 £ pj. um+j
 t (86)

Let us dénote for the sake of brevity

j=0 J ' ; = 0

v v

Let us set w = w in (79) and v = v in (85) and sum up the obtained relations.
(We do it in order to eliminate the term depending on both em and em.) After
summing the result from m = Otom = s — v(s ^ M)weobtain
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Y (Cl c3A
m + c3 AtBm + c2H

m + c2 c4 Ar2 Jm) = *£ (c1 c3 D
m +

m-0 m=0

+ c2 c3 E
m + c3 AtFm + c t c3 G

m + c2 c4 A r 2(Km - Lm)

+ c2 c3(M
m + Nm + Pm)) (89)

where

Am =(w, w)** , Bm = Dh(w, w) (90a, b)

Dm = (7tm - ©m, w\, Em = a » - p"„ w)h (904 e)

Fm = (f, w)h - (ƒ w)* , f = f p, Qm+^ (90/)
J=O

j=O

a„(f, y ) , J m = (A2em, v)fc (90h,j)

=o
= ( £ W+'.Vu) (90m)

Vo /o

= U «IA - (/ \X. ƒ = E h nrJ - rr (90«)
0

^m = (^.i, »«)o - (ff.«. ^ X . ff = E Pi ̂ m+J' • (90/0
j = O

In the case of Theorem 2 we have c t = c4 = 0, c3 = 1, Q = 0; thus (89)
simplifies to the relation

Y (cj 1 Affl™ + iïm) = Y (Em + Mm + Nm + Pm) . (91)
m=0 m=0

We estimate the left-hand sides of (89) and (91) from below and the right-hand
sides from abowe. We start with relation (91). In order to estimate £ Em let us
write

[( Io ; ̂  )o (.1 7 V ) J ( 9 2 )
VOL. 18, N°2, 1984
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(Kt- P u ' t f O o ^ l i r M l i + i i p - l l j i i w i u -

Relation (81^, Calderon's theorem and Taylor's theorem imply

j=o
CAfv

n+2,fi

As Y aj r7+j is t r i e discrete Ritz approximation of Y a,. üm+J relations (73j
(812), Lemma 2 and Taylor's theorem imply

In estimating the remaining terms on the right-hand side of (92) we use the
estimâtes

w

which foliow from [5, Theorems 4.1.5 and 4.4.5], [10, Lemma 7] and from
Lemma 2. Then we use Taylor's theorem and find that the sum of the last three
terms in (92) is bounded by Chn M || w \\x. Thus

cAt(hn + Ar)
m= 0

E fij
I J=0

(93)
| l

Estimate (93) holds also in the case of Theorem 1 with v = 2,
In order to estimate Y Mm in a proper form we use so called summation by

parts. Let us write
v = AP (94)

where, according to (882) and (41)-(45),

f" = em (v = 1), f" = G Aem + em (v = 2).

Then, according to (90m),

(95)

s —v / v

m=l \ J =

E p.
0

P; ^ » ̂  • (96)
j=0 /O
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Relations (732), (57), Lemma 1 and Taylor's theorem imply

Thus it follows from (94)-(96)

Mm < Chn

where we dénote for the sake of brevity

= At
m = 0 j = 0

The estimate

Ch" Sv

(97)

(98)

(99)

can be obtained by means of (90«), (90/?), summation by parts, standard devices
of the analysis of numerical intégration, Calderon's and Taylor's theorems.

According to the first inequality (66), (906) and (87^,

s—v s —v

m = 0 m-0
E M (100)

Because of expression (98) we shall need the estimate of £ Hm from below in
the form

m=Ö j=0

In the case v = 1 we have 0 ^ 1/2; thus using (41), (87), (88), (90*) and (67)
we obtain easily

from where (101) follows. In the case v = 2, 5 > 0 using (42), (90A) and (67)
we can dérive in a way similar to [10, p. 430] :

m — 0
R - C

j'=0
(102)

where

i? = - ( e 2 + 5 ) | | e s | | 2 + i [ ( G - l ) 2 + 5 ] | | e
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with || w ||2 = <2ft(w, w) and y = 9(0 - 1) -h 8. In the case of Theorem 2

Using the inequality

± (103)

with x = 2 we obtain R > || es ||2/4. Using (103) with x = 2/5 we obtain
R ^ || e5"1 ||2/20. Thus R ^ (|| es ||2 -h || e5"1 ||2)/40 and, according to (67),
R s* C(\\ es ||2 + || e5"1 ||2). Inserting this resuit into (102) we obtain (101).
(In the case of Theorem 1 we can dérive (101) similarly.)

Now we sketch the proof of Theorem 1. The terms depending on Em
9 Mm,

Nm and Pm are estimated in (93), (97) and (99). In the case of Km and Lm we
do first summation by parts. Then in the case of Dm, Fm, Gm, Km and Lm we
add to each term and subtract from each term the corresponding continuous
form(.,.)0;e.g.

Gm = - (g, w)0 + (g, w)0 - (g, w\ .

Then we use the standard results of the analysis of numerical intégration.
At the end we estimate the continuous forms

(nm - (Dm, w)0 , (Afc- 2ym, y)0 , (Afcsm, v)0

where k = 2, 3. We do it by means of the estimâtes

|| nm ||0 ^ CAt*+1 , || com ||0 ^ CAthn,

II A f c-2ym | |0 < C A ^ + k , || A*sf» Ui < CA^fc"

which can be obtained by means of Lemmas 1, 2 and Calderon's and Taylor's
theorems. The resuit is that the right-hand side of (89) (briefly R.H.S.) satisfies
the estimate

R.H.S. < C(Al* + h") \s2 + M
|

") \
|_ m = 0 j = 0

1
lj

where S2 is given by (98). The estimate

m = 0

(104)

(105)

follows from [10, pp. 429-431] and from (68).
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Using (42) and the fact that 0 ^ 1/2 we obtain from (90/)

jm =

Thus, according to (69),

* Ae° HÎ

, Ae"), .

(106)

Combining (89), (100), (101), (104H106), using several times inequality (103)
and then the discrete form of Gronwall's lemma we obtain

hn + A r 1 || Ae°

+ - (107)

Inequalities (74), (76) and (107) imply (59).
In the case 5 = 0 it is impossible to prove (101). However, in the case 8 = 0,

0 = 1/2 it holds, according to (61), (87), (88),

+em + 1 / 2 ) 5

Thus

- II e 1 ' 2 ||?
m = 0

?}. (108)

According to (61) and (95), f" = em+1/2 if 0 = 1/2. Thus we can estimate the
right-hand side of (89) (briefly R.H.S.) in the form

R.H.S. hn) \S2 + Ar
s-2

j - O

where

S2 = II e 5 " 1 ' 2 H, + || e1'2 H, + Af ' j f II e m + 1 / 2 II i •
m=0

(109)

010)

Combining (61), (89), (100), (105), (106), (108) and (109), using several times
inequality (103) and then the discrete form of Gronwall's lemma we find that
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il £s M o + II es~1/2 111 is bounded by the right-hand side of (107). From hère
we easily find that (62) is bounded by the right-hand side of (59). Theorem 1 is
proved.

Now we sketch the proof of Theorem 2 in the case v = 1 : In (91) we sum
only from m = l to m = s — 1. In the case m = 0, as w?. = 0 we can replace
in (79) and (81) ail expressions of the type À/0 by ƒ*. Setting w = e1 in such
a changed relation (79) and v = e1 in (85) and summing up the obtained
relations we get a relation which will be added to (91). Using the fact that
u\(. = Auft and modifying a little the preceding devices we obtain (64). In the
case v = 2 the proof is similar.

It should be noted that the term || u° ||n+2,n ^" A/~1/2 is a conséquence of
estimating in the fîrst step.

Remark 7 : If we modify the proof of Theorem 2 and use the Ritz approxi-
mation r instead of the discrete Ritz approximation rd we can weaken assump-
tion (63) and assume ut e Cv + 1(Hn + 1(Q)) only. Similar results can be obtained
in case of c1 > 0, c4 = 0.

Remark 8 : The starting values defined in Remark 3 do not spoil the rate
of convergence. E.g., according to the définition of u°, we have e° = 0; thus

li Ae° ||, = || e1 ||1 = || (r,1 - za^) - (u1 - z) + (u1 - z) ||x ^

^ || u1 - z \\x + Chn || u1 - z

because r̂  — zapr is the discrete Ritz approximation of u1 — z and z is defined
by (47) or by (48). The estimâtes of || s0 ||0 and || s1 ||0 can be obtained simi-
larly.

Remark 9 : Assumptions (57), (58), (63) can be weakened without loosing
the maximum rate of convergence. E.g., in the case of thermoelasticity we can
assume

Te

ut

instead of (57), (58). The only change in the proof of Theorem 1 is that we use
Taylor's theorem with the intégral remainder. In the case of Theorem 2 the
situation is the same.
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