RAIRO. ANALYSE NUMÉRIQUE

TERESA REGIŃSKA

External approximation of eigenvalue problems in Banach spaces

RAIRO. Analyse numérique, tome 18, nº 2 (1984), p. 161-174 http://www.numdam.org/item?id=M2AN_1984__18_2_161_0

© AFCET, 1984, tous droits réservés.

L'accès aux archives de la revue « RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

EXTERNAL APPROXIMATION OF EIGENVALUE PROBLEMS IN BANACH SPACES (*)

by Teresa REGIŃSKA (¹)

Communicated by Fr. CHATELIN

Abstract. — We are concerned with approximate methods for solving the eigenvalue problem $Tu = \lambda u$, $u \neq 0$, for the linear bounded operator T in a Banach space X. The problem is approximated by an appropriate family of eigenvalue problems for operators $\{T_h\}$. We present a theoretical framework which allows us to consider in the same way the methods for which T_h are defined on subspaces of X and those which are defined on spaces forming external approximation of X. Particularly, the paper contains theorems on sufficient conditions for stability and strong stability of $\{T_h\}$.

Résumé. — On considère ici une classe de méthodes de résolution approchée du problème spectral de la forme $Tu = \lambda u$, où T est un opérateur linéaire, borné dans un espace Banach X. Les méthodes présentées remplacent le problème original par une famille de problèmes spectraux pour des opérateurs T_h . Les résultats sont présentés d'une manière qui permet de considérer à la fois les méthodes où les T_h sont définits sur des sous-espaces de X et celles où les espaces de définition de T_h forment une approximation externe de X. L'ouvrage contient certaines conditions suffisantes de stabilité et de stabilité forte de la famille { T_h }.

1. INTRODUCTION

Let X be a Banach space and $T \in \mathscr{L}(X)$ be a linear bounded operator on X. Let us consider the eigenvalue problem $Tu = \lambda u, u \neq 0$. Most methods used to solve this problem consist in approximation of the initial problem by a sequence of eigenvalue problems for $T_h \in \mathscr{L}(X_h)$, where X_h are finite dimensional subspaces of X and T_h are certain approximantes of T. This approach has been used in many papers, among others by J. Decloux, N. Nassif, J. Rappaz in [5] and by F. Chatelin in [2]. However, there are methods which cannot be presented within this unifying theoretical framework (e.g. the Aronszajn's method, *cf.* [1, 12]). Therefore we consider the more general case of approximation when the operators T_h are defined in spaces not contained in X. Strictly speaking we use an external approximation of X. We present some theorems

^(*) Received in October 1982, revised in May 1983.

⁽¹⁾ Institute of Mathematics Polish Academy of Sciences, Śniadeckich 8, skr. poczt. 137 00-950 Warszawa, Poland.

R.A.I.R.O. Analyse numérique/Numerical Analysis, 0399-0516/84/02/161/14/\$ 3,40 © AFCET Bordas-Dunod

concerning the approximation of eigenelements of T by eigenelements of T_h . Particularly we formulate new theorems about sufficient conditions for stability and strong stability of $\{T_h\}$.

Let us introduce a family of Banach spaces $\{X_h\}_{h \in \mathscr{H}}$ with the norms $\|\cdot\|_h$, where $\mathscr{H} \subset \mathbb{R}^+$ has an accumulation point at 0. We assume that there exist uniformly bounded linear maps $r_h : X \xrightarrow{\text{on}} X_h$. Let F be a normed space such that there exist an isomorphism $\omega : X \to F$ and uniformly bounded linear maps $p_h : X_h \to F$. We adopt the following definition :

DEFINITION 1 : An approximation $\{X_h, r_h, p_h\}$ of X is said to be an external approximation convergent in F if for any $u \in X$

$$\lim_{h\to 0} \|\omega u - p_h r_h u\|_F = 0.$$

The above definition is weaker than that used customarily (cf. [11, 6]).

Next, let us introduce a family $\{T_h\}_{h \in \mathscr{H}}$ of linear operators where $T_h \in \mathscr{L}(X_h)$. We will assume that :

A1 : The approximation $\{X_h, r_h, p_h\}$ of X is convergent in F; A2 : For any $u \in X \lim_{h \to 0} ||r_h T u - T_h r_h u||_h = 0.$

2. STABILITY OF $\{T_h\}$

Let $\rho(T)$ and $\rho(T_h)$ denote, as usually, the resolvent sets of operators T and T_h respectively. We additionally assume that either the operators T_h have no residual spectrum or that the residual spectrum of T_h does not contain the points of $\rho(T)$ (since not only finite dimensional approximation is considered). We will use the following definition of stability *cf.* [4, 2]:

DEFINITION 2 : The approximation $\{T_h\}$ is stable at $z \in \rho(T)$ iff $\exists h(z)$,

$$\forall h \leq h(z) : z \in \rho(T_h) \quad and \quad || (z - T_h)^{-1} || \leq M(z) < \infty$$

Now we are going to formulate some sufficient conditions for stability of $\{T_h\}$ in terms of external approximation of T.

Let $N(r_h)$ denote the null space of r_h . Let us introduce the set of families of complementary subspaces of $N(r_h)$ in X

$$\mathscr{F} = \left\{ \left\{ V_h \right\}_{h \in \mathscr{H}}, V_h \subset X, V_h \oplus N(r_h) = X \right\}.$$

LEMMA 1 : If there exists $\{V_h\}_{h \in \mathcal{H}} \in \mathcal{F}$ such that

$$\delta_h = \delta(V_h) := \sup_{\substack{v \in V_h \\ \|v\| = 1}} \|\omega T v - p_h T_h r_h v\|_F \to 0, \qquad (2.1)$$

R.A.I.R.O. Analyse numérique/Numerical Analysis

EXTERNAL APPROXIMATION OF EIGENVALUE PROBLEMS 163

$$\varepsilon_h = \varepsilon(V_h) := \sup_{\substack{v \in V_h \\ \|v\| = 1}} \|\omega v - p_h r_h v\|_F \to 0, \qquad (2.2)$$

then $\{T_h\}$ is stable at any $\lambda \in \rho(T)$.

Proof : Let $\lambda \in \rho(T)$. Hence, there exists c > 0 such that

$$\| (\lambda - T) u \| \ge c \| u \| \quad \forall u \in X,$$

and for $\tilde{c} = c/\| \omega^{-1} \|$, $\| \omega(\lambda - T) u \|_F \ge \tilde{c} \| u \| \forall u \in X$. Let us take an arbitrary $u_h \in X_h$. Then there exists $v_h \in V_h$ such that $r_h v_h = u_h$. We have $\| v_h \| \ge (1/d) \| u_h \|_h$ and $\forall x_h \in X_h \| x_h \|_h \ge 1/d \| p_h x_h \|_F$, where

$$d \ge \max\left(\parallel p_h \parallel, \parallel r_h \parallel \right)$$

for any h. Hence

$$\| (\lambda - T_h) u_h \|_h = \| (\lambda - T_h) r_h v_h \|_h \ge \frac{1}{d} \| p_h (\lambda - T_h) r_h v_h \|_F =$$

$$= \frac{1}{d} \| \omega (\lambda - T) v_h + \lambda (p_h r_h - \omega) v_h + (\omega T - p_h T_h r_h) v_h \|_F \ge$$

$$\ge \frac{1}{d^2} \| u_h \|_h (\tilde{c} - |\lambda| \varepsilon_h - \delta_h).$$

Thus, for given $\lambda \in \rho(T)$ there exists h_0 such that for $h < h_0$

$$\| (\lambda - T_h) u_h \|_h \geq \frac{\widetilde{c}}{2 d^2} \| u_h \|_h,$$

what means, according to Definition 2, that $\{T_h\}$ is stable at λ .

Remark 1 : In the case of an internal approximation of X, when F = X, $X_h = V_h \subset X$ and ω and p_h are identity maps, and r_h are projections of X on X_h , the condition (2.2) is automatically satisfied with $\varepsilon_h = 0$. In turn, the condition (2.1) takes the form $||(T - T_h) | X_h || \to 0$ i.e. the assumption of Lemma 1 in [5].

In the general case of an external approximation we have $\varepsilon_h \neq 0$. Thus, we must analyse how $\varepsilon(V_h)$ depends on $\{V_h\} \in \mathscr{F}$. To do this we introduce the following numbers characterizing the subspaces V_h :

$$\gamma(V_h) := \sup_{\substack{v \in V_h \\ \|v\| = 1}} \|Q_h v\|, \qquad (2.3)$$

where $Q_h (h \in \mathcal{H})$ are some given linear and bounded projections of X onto $N(r_h)$.

Let $\hat{V}_h = (1 - Q_h) X$. In this case $\gamma(\hat{V}_h) = 0$.

We can state the following result :

LEMMA 2 : Let us assume that $\varepsilon(\hat{V}_h) \to 0$ as $h \to 0$. Then $\varepsilon(V_h) \to 0$ for $\{V_h\} \in \mathscr{F} \text{ if and only if } \gamma(V_h) \to 0$.

$$\begin{split} \varepsilon(V_{h}) &= \sup_{\substack{v \in V_{h} \\ ||v|| = 1}} \| \omega Q_{h} v + \omega(1 - Q_{h}) v - p_{h} r_{h}(1 - Q_{h}) v \|_{F} \geq \\ &\geq \sup_{\substack{v \in V_{h} \\ ||v|| = 1}} \left\{ \frac{1}{\| \omega^{-1} \|} \| Q_{h} v \| - \| (1 - Q_{h}) v \| \varepsilon(\hat{V}_{h}) \right\} \\ &\geq \frac{1}{\| \omega^{-1} \|} \gamma(V_{h}) - (1 + \gamma(V_{h})) \varepsilon(\hat{V}_{h}) \,. \end{split}$$

The implication " \Rightarrow " follows from the above inequality.

It is easy to see that

$$\varepsilon(V_h) \leq \sup_{\substack{v \in V_h \\ \|v\| = 1}} \left\{ \|\omega\| \cdot \|Q_h v\| + \|(1 - Q_h) v\| \varepsilon(\hat{V}_h) \right\} \leq \gamma(V_h) \|\omega\| + \varepsilon(\hat{V}_h)$$

which ends the proof of Lemma 2.

In the case when the X_h are infinite dimensional spaces the condition (2.2) becomes very strong, so another version of Lemma 1 will be more useful in this special case. Let us introduce the following

DEFINITION 3: The family $\{V_h\}, V_h \subset X$ is asymptotically equivalent to $\{X_h\}$ with respect to $\{r_h\}$ $(r_h \in \mathcal{L}(X, X_h), r_h X = r_h V_h = X_h)$ if the r_h are uniformly bounded and $\inf_{\substack{x \in V_h \\ ||x|| = 1}} ||r_h x||_h \ge c > 0, \forall h \in \mathcal{H}.$

LEMMA 3 : If there exist $\{\hat{r}_h\}$ and $\{\hat{V}_h\}$ asymptotically equivalent to $\{X_h\}$ with respect to $\{\hat{r}_h\}$ such that

$$\hat{\delta}(\hat{V}_h) := \sup_{\substack{v \in \hat{V}_h \\ \|v\| = 1}} \left\| (T - (r_h|_{V_h})^{-1} T_h r_h) v \right\| \to 0,$$

then $\{T_h\}$ is stable at any $\lambda \in \rho(T)$.

Proof: Let us take $u_h \in X_h$. Let $v_h \in V_h$ be such that $\hat{r}_h v_h = u_h$:

$$\| (\lambda - T_h) u_h \|_h = \| (\lambda - T_h) \hat{r}_h v_h \|_h = \| \hat{r}_h (\hat{r}_h |_{V_h})^{-1} (\lambda - T_h) \hat{r}_h v_h \|_h \ge$$

$$\geq c \| \lambda v_h - T v_h + (T - (\hat{r}_h |_{V_h})^{-1} T_h \hat{r}_h) v_h \|$$

$$\geq c \| (\lambda - T) v_h \| - \hat{\delta} (\hat{V}_h) \| v_h \|.$$

R.A.I.R.O. Analyse numérique/Numerical Analysis

Since $\lambda \in \rho(T)$, there exists a constant $c_1 > 0$ such that $\| (\lambda - T) v_h \| \ge c_1 \| v_h \|$. Moreover, $\| v_h \| \ge \frac{1}{\| \hat{r}_h \|} \| u_h \|_h$. If $c_2 := \sup_h \| \hat{r}_h \|$, then

$$\| (\lambda - T_h) u_h \| \geq \left\{ \frac{c \cdot c_1}{c_2} - \frac{\hat{\delta}(\hat{V}_h)}{c_2} \right\} \| u_h \|_h,$$

what proves Lemma 3.

Now, we are going to give a short analysis of the assumptions of the above lemma. To do this we restrict our considerations to the case of separable Hilbert spaces.

LEMMA 4 : For an arbitrary separable Hilbert space X and a family of separable Hilbert spaces X_h there exist uniformly bounded maps $r_h : X \to X_h$ such that the orthogonal complements of the null spaces of r_h form a family asymptotically equivalent to $\{X_h\}$ with respect to $\{r_h\}$.

Proof: Let $\{u_n\}_{n=1}^{\infty}$ and $\{u_n^h\}_{n=1}^{\infty}$ be orthonormal bases in X and X_h respectively. If X_h is k-dimensional, we put $u_j^h = 0$ for j > k. Transformation $\varphi: X \to l^2$ and $\varphi_h: X_h \to l^2$ are defined as follows:

$$\begin{aligned} \varphi u &= \{ (u, u_1), (u, u_2), \dots \} & \text{for } u \in X , \\ \varphi_h v &= \{ (v, u_1^h)_h, (v, u_2^h)_h, \dots \} & \text{for } v \in X_h . \end{aligned}$$

Thus $\forall u \in X \parallel \varphi u \parallel_{l^2} = \parallel u \parallel \text{ and } \forall \{ x_n \} \in l^2$

$$\| \phi^{-1} \{ x_n \} \|^2 = \| \sum_{n=1}^{\infty} x_n u_n \|^2 = \sum_{n=1}^{\infty} x_n^2 = \| \{ x_n \} \|_{l^2}^2.$$

Similarly $\| \phi_h \| = 1$ and $\phi_h^{-1} : \phi_h X_h \to X_h$, $\| \phi_h^{-1} \| = 1$. Let P_h be the orthogonal projection from l^2 onto $\phi_h X_h$. Let

$$r_h := \varphi_h^{-1} P_h \varphi : X \to X_h, \qquad (2.5)$$

$$V_h \coloneqq \varphi^{-1} \varphi_h X_h. \tag{2.6}$$

For any $v \in X || r_h v ||_h \leq || v ||$ and since $\varphi V_h = \varphi_h X_h$, $r_h |_{V_h} = \varphi_h^{-1} \varphi |_{V_h}$ and $(r_h |_{V_h})^{-1} = \varphi^{-1} \varphi_h$. Thus $|| (r_h |_{V_h})^{-1} || = 1$. Hence $\{ V_h \}$ is asymptotically equivalent to $\{ X_h \}$ with respect to $\{ r_h \}$.

Now, let us take arbitrary elements $v \in V_h$ and $x \in N(r_h)$. For v there exists $u_v \in X_h$ such that $(v, u_i) = (u_v, u_i^h)$, i = 1, 2, ... Hence $(v, x) = \sum_{i=1}^{\infty} (u_v, u_i^h) (x, u_i)$.

T. REGIŃSKA

Since $\varphi x \perp \varphi_h X_h$, $\sum_{i=1}^{\infty} (x, u_i) (u, u_i^h) = 0$ for any $u \in X_h$, so it also holds for $u = u_v$. Thus $(v, x)^{i=1} 0$ for any $v \in V_h$ and $x \in N(r_h)$, what means that V_h is orthogonal to $N(r_h)$.

Let Q_h be orthogonal projection onto $N(r_h)$, and V_h be complementary subspace of $N(r_h)$ in X. Thus

$$\inf_{\substack{v \in V_h \\ \|v\| = 1}} \|r_h v\|_h = \inf_{\substack{v \in V_h \\ \|v\| = 1}} \|r_h Q_h v + r_h (1 - Q_h) v\| =$$

$$= \inf_{\substack{v \in V_h \\ \|v\| = 1}} \|(1 - Q_h)v\| \cdot \left\| r_h \frac{(1 - Q_h)v}{\|(1 - Q_h)v\|} \right\| \ge \inf_{\substack{v \in V_h \\ \|v\| = 1}} \|(1 - Q_h)v\| \cdot \inf_{\substack{x \perp N(r_h) \\ \|x\| = 1}} \|r_h x\|_h.$$

Using the notation (2.3) we obtain

$$\inf_{\substack{v \in V_h \\ \|v\|=1}} \|r_h v\|_h \ge (1 - \gamma(V_h)) \cdot \inf_{\substack{x \perp N(r_h) \\ \|x\|=1}} \|r_h x\|_h.$$

This leads us to the following remark :

Remark 2: Let $\{N(r_h)^{\perp}\}$ be asymptotically equivalent to $\{X_h\}$ with respect to $\{r_h\}$. If $\exists c_0 > 0$ such that $\forall h < h_0 \ 1 - \gamma(V_h) \ge c_0$ then the family $\{V_h\}$ is also asymptotically equivalent to $\{X_h\}$ with respect to $\{r_h\}$.

Remark 3: If $\{V_h\}$ satisfies the condition (2.2), then $\{V_h\}$ is asymptotically equivalent to $\{X_h\}$ with respect to $\{r_h\}$.

This follows from the inequalities : $\forall v \in V_h$, ||v|| = 1:

$$|| r_h v ||_h \geq \frac{1}{|| p_h ||} [|| \omega v ||_F - \varepsilon(V_h)].$$

Since $|| p_h || \leq \alpha$ and $|| \omega v ||_F \geq \frac{1}{|| \omega^{-1} ||} || v ||$, we have

$$|| r_h v || \ge \frac{1}{\alpha} \left[\frac{1}{|| \omega^{-1} ||} - \varepsilon(V_h) \right]$$

for any $v \in V_h$ and ||v|| = 1.

3. APPROXIMATION OF EIGENELEMENTS OF T

In this section the proofs of the theorems are based on the ideas contained in [5] and [2].

Let Γ be a Jordan curve in the resolvent set $\rho(T)$. If $\{T_h\}$ is stable for all $\lambda \in \Gamma$, then $\Gamma \subset \rho(T_h)$ for sufficiently small $h < h_0$. Hence, we can define the spectral projectors $E: X \to X$ and $E_h: X_h \to X_h$ by

$$E = \frac{1}{2 \pi i} \int_{\Gamma} (\lambda - T)^{-1} d\lambda, \quad E_h = \frac{1}{2 \pi i} \int_{\Gamma} (\lambda - T_h)^{-1} d\lambda.$$

LEMMA 5: If the assumption A2 is satisfied and $\{T_h\}$ is stable on Γ , then $\forall v \in X \lim_{h \to 0} || r_h Ev - E_h r_h v ||_h = 0.$

Proof : From the definition of E and E_h and from the identity

$$r_h(\lambda - T)^{-1} - (\lambda - T_h)^{-1} r_h = (\lambda - T_h)^{-1} (T_h r_h - r_h T) (\lambda - T)^{-1}$$

it follows that for given $v \in X$

$$\| r_h E v - E_h r_h v \| \leq \frac{|\Gamma|}{2\pi} \sup_{\Gamma} \| (\lambda - T_h)^{-1} (T_h r_h - r_h T) (\lambda - T)^{-1} v \| =$$

= $\frac{|\Gamma|}{2\pi} \sup_{u \in U} \| (\lambda - T_h)^{-1} (T_h r_h - r_h T) u \|,$

where $U = \{ u \in X : u = (\lambda - T)^{-1} v, \lambda \in \Gamma \}.$

The operators $(\lambda - T_h)^{-1}$ are uniformly bounded for $\lambda \in \Gamma$ and $h < h_0$ since the stability of $\{T_h\}$ on Γ . Thus, by the assumption A2,

$$\forall u \in X \parallel (\lambda - T_h)^{-1} (T_h r_h - r_h T) u \parallel \to 0.$$

Moreover,

$$\| (\lambda - T_h)^{-1} (T_h r_h - r_h T) \| \leq \| (\lambda - T_h)^{-1} r_h T \| + \| \lambda (\lambda - T_h)^{-1} r_h \| + \| r_h \|,$$

so the operators $(\lambda - T_h)^{-1}(T_h r_h - r_h T)$ are uniformly bounded for $\lambda \in \Gamma$ and $h < h_0$. Thus, since the set U is compact,

$$\sup_{u\in U} \left\| (\lambda - T_h)^{-1} (T_h r_h - r_h T) u \right\| \to 0.$$

vol. 18, Nº 2, 1984

T. REGIŃSKA

LEMMA 6 : If A1 and A2 are satisfied and $\{T_h\}$ is stable on Γ , then

$$\forall v \in EX \inf_{y_h \in E_h X_h} \| \omega v - p_h y_h \|_F \to 0.$$

Proof : Since

 $\inf_{y_h \in E_h X_h} \| \omega v - p_h y_h \|_F \leq \| \omega v - p_h r_h v \|_F + \| p_h \| \| r_h E v - E_h r_h v \|_h,$

the proof follows immediately from Lemma 5.

As usually, $\sigma(T)$ denotes the spectrum of T. Let $\Omega \subset \mathbb{C}$ be an open domain with the boundary $\Gamma \subset \rho(T)$ which is a Jordan curve. Finally, let

$$K(\lambda, \delta) := \{ z \in \mathbb{C} : | z - \lambda | \leq \delta \}.$$

THEOREM 1 : If the assumptions A1 and A2 are satisfied and $\{T_h\}$ is stable in $\rho(T)$ then :

1° if $\Omega \cap \sigma(T) \neq 0$ then $\sigma(T_h) \cap \Omega \neq 0$ for sufficiently small h,

2° if $\lambda_0 \in \sigma(T)$ and $\exists \delta_0 > 0 : K(\lambda_0, \delta_0) \cap \sigma(T) = \{\lambda_0\}$ then $\forall 0 < \delta < \delta_0$, $0 \neq \sigma(T_h) \cap K(\lambda_0, \delta_0) \subset K(\lambda_0, \delta)$ for sufficiently small h, 3° if $\lambda_h \in \sigma(T_h)$ and $\lambda_h \to \lambda_0$ then $\lambda_0 \in \sigma(T)$.

Proof: It follows from Lemma 5 that $\forall v \in EX \inf_{y_h \in E_h X_h} || r_h v - y_h ||_h \to 0.$ f $v \neq 0$ then since $A1 = v \neq 0$ for sufficiently small h. Thus 10 is proved

If $v \neq 0$ then, since A1, $r_h v \neq 0$ for sufficiently small h. Thus 1° is proved. For the proof of 2° it is enough to remark, that for

$$0 < \delta < \delta_0 K(\lambda, \delta_0) \setminus \operatorname{int} K(\lambda, \delta) \subset \rho(T)$$

and thus, by the stability of $\{T_h\}, K(\lambda, \delta_0)$ is contained in $\rho(T_h)$ for $h < h_0$. Assume now that $\lambda_h \in \sigma(T_h)$ and $\lambda_h \to \lambda_0 \notin \sigma(T)$. Thus there exists $\delta > 0$ such that $K(\lambda_0, \delta) \subset \rho(T)$ and from the stability $K(\lambda_0, \delta) \subset \rho(T_h)$ for $h < h_0$, what means that for $h < h_1, \lambda_h \in \rho(T_h)$.

The above theorem gives convergence of eigenvalues, but without preservation of the algebraic multiplicities. Namely, we have only

THEOREM 2: If A1 and A2 are satisfied and $\{T_h\}$ is stable on Γ then 1° dim $EX = \infty \Rightarrow \dim E_h X_h \to \infty$ 2° dim $EX = n \Rightarrow \dim p_h E_h X_h \ge n$.

Proof: Let $\{u_i\}_{i=1}^{\infty}$ be a linearly independent set of elements of *EX*. From Lemma 6 it follows that for every finite number

$$N \forall \varepsilon \exists h_{\varepsilon} \forall h < h_{\varepsilon} \forall i = 1, ..., N \exists x_{i}^{h} \in E_{h} X_{h} : \| \omega u_{i} - p_{h} x_{i}^{h} \|_{F} \leq \varepsilon.$$

R.A.I.R.O. Analyse numérique/Numerical Analysis

Thus $\forall N < \infty \exists h_N \forall h < h_N \dim p_h E_h X_h \ge N$, hence 1°. Let now dim EX = n. By Lemma 6 we have

$$\sup_{\substack{v \in EX \\ \|v\| = 1}} \inf_{y_h \in E_h X} \|\omega v - p_h y_h\|_F \to 0.$$

Using the known notation (cf. [7] chap. IV) : for closed subspaces Y, Z of X

$$\delta(Y, Z) = \sup_{\substack{y \in Y \\ \|y\| = 1}} \inf_{z \in Z} \|y - z\|, \qquad (3.1)$$

we have $\delta(\omega EX, p_h E_h X_h) \to 0$. It is known that if $\delta(Y, Z) < 1$ then dim $Y \leq \dim Z$ (cf. [7] chap. IV, Corollary 2.6). Thus

$$n = \dim \omega EX \leq \dim p_h E_h X_h$$
.

Under additional assumptions we can state the following result :

THEOREM 3 : One supposes A1, A2 and stability of $\{T_h\}$ on Γ . Moreover let $\|p_h u_h - f\|_F \to 0$, where $u_h \in X_h$, imply that f belongs to ωX , and let the norms in F and X_h be asymptotically equivalent (i.e. if $u_h \in X_h$ and $\|p_h u_h\|_F \to 0$ then $\|u_h\|_h \to 0$). Then if $x_h \in E_h X_h$ and $\|p_h x_h - f\|_F \to 0$ then $f \in \omega EX$.

Proof : If $|| p_h x_h - f || \to 0$ then there exists $x_0 \in X$ such that $f = \omega x_0$. It remains to show that $Ex_0 = x_0$. From the inequality

$$\|\omega x - p_h x_h\|_F \ge \|\omega (Ex_0 - x_0)\| - \|\omega Ex_0 - p_h E_h r_h x_0\|_F - \|p_h E_h (r_h x_0 - x_h)\|_F$$

we get

$$\| Ex_0 - x_0 \| \le \| \omega^{-1} \| [\| \omega x_0 - p_h x_h \|_F + \| \omega Ex_0 - p_h r_h Ex_0 \|_F + \| p_h \| \| r_h Ex_0 - E_h r_h x_0 \|_h + \| p_h E_h \| \| r_h x_0 - x_h \|_h].$$

The convergence $||p_h x_h - \omega x_0|| \to 0$ implies $||p_h r_h x_0 - p_h x_h||_F \to 0$ and thus, by the additional assumption on p_h , $||r_h x_0 - x_h||_h \to 0$. By Lemma 5 and A1 we have : $\forall \varepsilon \exists h_0 \forall h < h_0 || Ex_0 - x_0 || \leq \varepsilon$, thus $Ex_0 = x_0$.

4. STRONG STABILITY OF $\{T_h\}$

Let $\Omega \subset \mathbb{C}$ be a domain limited by the Jordan curve $\Gamma \subset \rho(T)$. Let E and E_h be the spectral projections associated with the spectrum of T and T_h inside Γ . We will assume that dim $EX < \infty$. With respect to the convergence of eigenvectors it is very important to have the same dimensions of $E_h X_h$ (or $p_h E_h X_h$)

and EX. We will use the notion of strongly stable approximation $\{T_h\}$ similar to that introduced by F. Chatelin in [4].

DEFINITION 4 : An approximation $\{T_h\}$, stable on Γ , is strongly stable on Γ if dim $EX = \dim p_h E_h X_h$ for h small enough.

The convergence of external approximation (i.e. A1), the consistency of $\{T_h\}$ to T (i.e. A2) and the stability of $\{T_h\}$ are not sufficient for strong stability of $\{T_h\}$, so we need a stronger assumption.

LEMMA 7 : If $\{T_h\}$ is stable on Γ and

$$\| (T_h r_h - r_h T) (\lambda - T)^{-1} \|_h \to 0 \quad \text{for} \quad \lambda \in \Gamma$$
(3.2)

then $|| r_h E - E_h r_h ||_{\mathcal{L}(X,X_h)} \to 0.$

Proof: Repeating argumentation of the proof of Lemma 5 we get $||r_h E - E_h r_h|| \leq c_0 ||(T_h r_h - r_h T)(\lambda - T)^{-1}||$ for a some constant c_0 .

LEMMA 8 : If there exists $\{V_h\} \in \mathcal{F}$ such that $\forall h < h_0$

$$\eta_h := \inf_{\substack{x \in V_h \\ \|x\| = 1}} \| p_h r_h x \|_F \ge \varepsilon_0 > 0$$

then

$$\delta(p_h E_h X_h, \omega EX) \leq \frac{1}{\varepsilon_0} \| p_h E_h r_h - \omega E \|.$$

Proof: Let \tilde{V}_h be a subspace of V_h such that $r_h \tilde{V}_h = E_h X_h$. Then

$$\| p_h E_h r_h - \omega E \| \ge \sup_{\substack{x \in X \\ \|x\| = 1}} \inf_{y \in EX} \| p_h E_h r_h x - \omega y \| \ge$$

$$\geq \sup_{\substack{x \in \tilde{\mathcal{V}}_h \\ \|x\| = 1}} \inf_{y \in EX} \|p_h r_h x - \omega y\| \ge \inf_{\substack{x \in \tilde{\mathcal{V}}_h \\ \|x\| = 1}} \|p_h r_h x\| \sup_{\substack{x_h \in E_h X_h \\ \|p_h x_h\| = 1}} \inf_{y \in EX} \|p_h x_h - \omega y\|.$$

According to (3.1) the last factor is equal to $\delta(p_h E_h X_h, \omega E X)$.

THEOREM 4 : If the assumptions A1, (2.1), (2.2), (3.2) are satisfied, then $\{T_h\}$ is strongly stable on Γ .

Proof: It follows from (2.2) that

$$\eta_h \geq \inf_{\substack{x \in \mathcal{V}_h \\ \|x\| = 1}} \|\omega x\|_F - \sup_{\substack{x \in \mathcal{V}_h \\ \|x\| = 1}} \|p_h r_h x - \omega x\|_F \geq \frac{1}{\|\omega^{-1}\|} - \varepsilon_h,$$

R.A.I.R.O. Analyse numérique/Numerical Analysis

thus $\eta_h \ge \varepsilon_0 > 0$ for sufficiently small *h*. Moreover, since dim $EX < \infty$, by Lemma 7

$$\| p_h E_h r_h - \omega E \| \leq \| p_h \| \| E_h r_h - r_h E \| + \| (p_h r_h - \omega) E \| \to 0.$$

Hence, from Lemma 8 we get $\delta(p_h E_h X_h, \omega EX) < 1$ for *h* small enough and thus dim $p_h E_h X_h \leq \dim \omega EX$. The oposit inequality have been obtained in Theorem 2, thus dim $p_h E_h X_h = \dim EX$.

The assumption (2.2), which is very strong in the case of infinite dimensional spaces X_h , can be ommitted as it is shown in the following.

THEOREM 5: Let A1 be satisfied. Moreover, let $\{V_h\}$ be asymptotically equivalent to $\{X_h\}$ with respect to $\{r_h\}$ and $\{X_h\}$ be asymptotically equivalent to $\{p_h X_h\}$ with respect to $\{p_h\}$. If

$$\| [T - (r_h|_{V_h})^{-1} T_h r_h] (\lambda - T)^{-1} \| \to 0 \quad for \quad \lambda \in \Gamma$$
 (3.3)

then $\{T_h\}$ is strongly stable on Γ .

Proof : It follows from (3.3) that

$$\exists c > 0 \ \forall h < h_0 \ \forall \lambda \in \Gamma \parallel (r_h \mid_{V_h})^{-1} (\lambda - T_h) r_h (\lambda - T)^{-1} \parallel \geq c.$$

On the other hand

$$\left\| (r_{h}|_{V_{h}})^{-1} (\lambda - T_{h}) r_{h} (\lambda - T)^{-1} \right\| \leq \| \lambda - T_{h} \| \| (r_{h}|_{V_{h}})^{-1} \| \| r_{h} \| \| (\lambda - T)^{-1} \|.$$

Thus, by the uniform boundness of $||(r_h|_{V_h})^{-1}||$ and $||r_h||$ we obtain that $||\lambda - T_h|| \ge c_1 > 0$ for $h < h_0$ and $\lambda \in \Gamma$, what gives the stability of $\{T_h\}$ on Γ .

Moreover, (3.3) implies (3.2). Thus, by Lemma 7, $||r_h E - E_h r_h|| \to 0$, what implies $||p_h E_h r_h - \omega E|| \to 0$, since dim $EX < \infty$. The assumption on asymptotic equivalence of $\{V_h\}, \{X_h\}$ and $\{p_h X_h\}$ guaranties the existence of positive lower bound for η_h . Hence, by Lemma 8, $\delta(p_h E_h X_h, \omega EX) \to 0$. Thus dim $p_h E_h X_h \leq \dim \omega EX$ what together with Theorem 2 gives : dim $p_h E_h X_h = \dim E_h X_h = \dim EX$ for sufficiently small h.

The condition (3.3) imposed on the approximation is some modification of radial convergence introduced in [2, 3] for the case of internal approximation.

5. APPLICATION

Let X be a Hilbert space with the scalar product a(.). Let b be a bounded sesquilinear form defined on $X \times X$. The eigenvalue problem for two forms

$$b(u, v) = \lambda a(u, v) \quad \forall v \in X \tag{5.1}$$

is considered. This problem is equivalent to the eigenproblem for an operator T defined by : $b(u, v) = a(Tu, v) \forall u, v \in X$. Let V be a dense subspace of X. We will consider approximate methods of solving the problem (5.1) which are generated by sequences of sesquilinear forms a_n and b_n defined on $V \times V$. It is assumed that $a_n n = 0, 1, ...$ are symmetric and positive definite and b_n are bounded with respect to a_n , i.e. $\forall u, v \in V | b_n(u, v) | \leq c_n a_n^{1/2}(u, u) a_n^{1/2}(v, v)$. Let X_n be the closure of V in the norm $a_n^{1/2}$, n = 0, 1, ... The *n*-th approximate eigenvalue problem has the form

find
$$\lambda \in \mathbb{C}$$
 and $0 \neq u \in X_n$ such that
 $b_n(u, v) = \lambda a_n(u, v) \quad \forall v \in V$,
$$(5.2)$$

which is equivalent to the eigenproblem for an operator T_n defined by a_n and $b_n : b_n(u, v) = a_n(T_n u, v) \quad \forall v \in V, u \in X_n$. Under the assumptions

$$a_0 \leqslant a_n \leqslant a \,, \tag{5.3}$$

a is quasi-bounded with respect to a_0 , i.e. there exists a symmetric operator \hat{L} in X_0 , with dense domain V, such that $a(u, v) = a_0(\hat{L}u, v) \forall u, v \in V$ (cf. [1]),

the approximation (5.2) can be described in terms of external approximation (for details see [8]).

From (5.3) and (5.4) it follows that *a* is quasi-bounded with respect to a_n , n = 1, 2, ... Let \hat{L}_n be the symmetric operator defined by $a(u, v) = a_n(\hat{L}_n u, v)$ $\forall u, v \in V$, and let L_n denote its selfadjoint extension in X_n . L_n is positive definite. Thus, there is a unique positive definite and self-adjoint square root $L_n^{1/2}$ of L_n and the domain $D(L_n)$ of L_n is dense in $D(L_n^{1/2})$. It can be proved (see [8]) that $D(L_n^{1/2}) = X$ and $\forall u, v \in X$ $a(u, v) = a_n(L_n^{1/2} u, L_n^{1/2} v)$. Let us put $r_n := L_n^{1/2}$. It is easy to show (see [8]) that $||r_n||_{\mathscr{L}(X,X_n)} = ||r_n^{-1}||_{\mathscr{L}(x_nX)} = 1$. We define $p_n := r_n^{-1}$. The approximation $\{X_n, r_n, p_n\}$ is convergent in X due to Definition 1. The following property can be proved (see [8]) : **LEMMA** 9 : Let (5.3) and (5.4) be satisfied and moreover

$$\forall u \in V \sup_{\substack{v \in V \\ \|v\| = 1}} \left| a_n(u, v) - a(u, v) \right| \to 0, \qquad (5.5)$$

$$\sup_{\substack{u,v \in V \\ \|u\|^{n} = \|v\| = 1}} |b_n(u,v) - b(u,v)| \to 0.$$
(5.6)

Let $||u_n||_n \leq M$ and $||v_n||_n \leq M$ n = 0, 1, ... for some M. If $a_n(u_n, w) \rightarrow a(u, w) \ \forall w \in V$, and $a_n(v_n, w) \rightarrow a(v, w) \ \forall w \in V$ imply

$$b_n(u_n, v_n) \to b(u, v), \qquad (5.7)$$

then $\{T_n\}$ is stable at any $\lambda \in \rho(T)$.

Let us remark, that in the considered case the condition (2.1) of Lemma 1 implies A2 and (3.2). Thus we have

COROLLARY 1 : If the assumptions (5.3)-(5.7) are satisfied then the method is convergent in the sense of Theorems 1 to 4.

The class of methods described above has been investigated by R. D. Brown in [1] by using the another theory. He adopts the theory of discrete convergence of Banach spaces in the form developed by Stummel [10]. His results are similar to those obtained above.

REFERENCES

- 1. R. D. BROWN, Convergence of approximation methods for eigenvalues of completely continuous quadratic forms, Rocky Mt. J. of Math. 10, No. 1, 1980, pp. 199-215.
- 2. F. CHATELIN, The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators, SIAM Review, 23 No. 4, 1981, pp. 495-522.
- 3. F. CHATELIN, J. LEMORDANT, Error bounds in the approximation of eigenvalues of differential and integral operators, J. Math. Anal. Appl. 62, No. 2, 1978, pp. 257-271.
- 4. F. CHATELIN, Convergence of approximation methods to compute eigenelements of linear operators, SIAM J. Numer. Anal. 10, No. 5, 1973, pp. 939-948.
- 5. J. DESCLOUX, N. NASSIF, J. RAPPAZ, On spectral approximation, Part 1: The problem of convergence, Part 2: Error estimates for the Galerkin method, RAIRO Anal. Numer. 12, 1978, pp. 97-119.
- 6. R. GLOWINSKI, J. L. LIONS, R. TRÉMOLIÈRES, Numerical analysis of variational inequalities, 1981.
- 7. T. KATO, Perturbation theory for linear operators, Springer Verlag, Berlin, 1966.
- 8. T. REGIŃSKA, Convergence of approximation methods for eigenvalue problems for two forms, to appear.

T. REGIŃSKA

- 9. T. REGIŃSKA, Eigenvalue approximation, Computational Mathematics, Banach Center Publications.
- 10. F. STUMMEL, Diskrete Konvergenz linearer operatoren, I Math. Ann. 190, 1970, 45-92; II Math. Z. 120, 1971, pp. 231-264.
- 11. R. TEMAM, Numerical analysis, 1973.
- 12. H. F. WEINBERGER, Variational methods for eigenvalue approximation, Reg. Conf. Series in Appl. Math. 15, 1974.