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EXTERNAL APPROXIMATION OF EIGENVALUE PROBLEMS
IN BANACH SPACES (*)

by Teresa REGINSKA (*)

Communicated by Fr. CHATELIN

Abstract. — We are concerned with approximate methods for solving the eigenvalue problem
Tu — Xu, u ^ 0, for the linear bounded operator T in a Banach space X. The problem is approximated
by an appropriate family of eigenvalue problems for operators { Th }. We present a theoretical fra-
mework which allows us to consider in the same way the methodsfor which Th are defined on subspaces
of X and those which are defined on spaces forming external approximation of X. Particularly, the
paper contains theorems on sufficient conditions for stability andstrong stability of{ Th }.

Résumé. — On considère ici une classe de méthodes de résolution approchée du problème spectral
de la forme Tu = Xu, où T est un opérateur linéaire, borné dans un espace Banach X. Les méthodes
présentées remplacent le problème original par une famille de problèmes spectraux pour des opé-
rateurs Th. Les résultats sont présentés d'une manière qui permet de considérer à la fois les méthodes
où les Th sont définis sur des sous-espaces de X et celles où les espaces de définition de Th forment
une approximation externe de X. Vouvrage contient certaines conditions suffisantes de stabilité et de
stabilité forte de la famille {Th}.

1. INTRODUCTION

Let X be a Banach space and T e 5£{X) be a linear bounded operator on X.
Let us consider the eigenvalue problem Tu = Xu, u # 0. Most methods used
to solve this problem consist in approximation of the initial problem by a
séquence of eigenvalue problems for Th e <$?(Xh\ where Xh are fini te dimen-
sional subspaces of X and Th are certain approximantes of T. This approach
has been used in many papers, among others by J. Decloux, N. Nassif, J. Rappaz
in [5] and by F. Chatelin in [2], However, there are methods which cannot be
presented within this unifying theoretical framework (e.g. the Aronszajn's
method, cf. [1, 12]). Therefore we consider the more gênerai case of approxi-
mation when the operators Th are defined in spaces not contained in X. Strictly
speaking we use an external approximation of X. We present some theorems
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162 T. REGINSKA

concerning the approximation of eigenelements of T by eigenelements of Th.
Particularly we formulate new theorems about sufficient conditions for
stability and strong stability of { Th }.

Let us introducé a family of Banach spaces { Xh } h e J f with the norms || • ||A,
where ffl a U + has an accumulation point at 0. We assume that there exist
uniformly bounded linear maps rh : X

 on > Xh. Let F be a normed space such
that there exist an isomorphism CÛ : X -• F and uniformly bounded linear maps
ph : Xh -> F. We adopt the following définition :

DÉFINITION 1 : An approximation { Xh, rh, ph} of X is said to be an external
approximation convergent in F if for any u G X

lim || (ÙU - ph rh u \\F = 0.

The above définition is weaker than that used customarily (cf. [11, 6]).
Next, let us introducé a family { Th } h e ^ of linear operators where

Th e ^(Xh), We will assume that :

Al : The approximation { Xh, rhi ph } of X is convergent in F ;
A2 : For any u e X lim || rh Tu - Th rh u \\h = 0.

hO

2. STABILITY OF { Th }

Let p(T) and p(Th) dénote, as usually, the résolvent sets of operators T and
Th respectively. We additionally assume that either the operators Th have no
residual spectrum or that the residual spectrum of Th does not contain the
points of p(T) (since not only fmite dimensional approximation is considered).
We will use the following définition of stability cf. [4, 2] :

D É F I N I T I O N 2 : The approximation {Th} is stable at z e p (T) iff3h(z),

Mh < h(z) : z e p(Th) and || (z - T ^ " 1 || ^ M{z) < oo .

Now we are going to formulate some sufficient conditions for stability of
{ Th } in tenus of external approximation of T.

Let N(rh) dénote the null space of rh. Let us introducé the set of families of
complementary subspaces of N(rh) in X

^ = { { y H }*«*, Vh aX,Vh® N(rh) = X}.

L E M M A 1 : If there exists { Vh } h e ^ e SF such that

PhThrhv\\F^0, (2.1)
veVh

\\v\\ = l

R.A.LR.O. Analyse numérique/Numérical Analysis



EXTERNAL APPROXIMATION OF EIGENVALUE PROBLEMS 163

e„ = e(Vh) == s u p || mt> -phrhv\\F^0, (2.2)
veVh

\\v\\ = l

then { Th } is stable at any X e p(T).

Proof: Let X e p(T). Hence, there exists c > 0 such that

|| (?, - 70 u || > c || u || V w e l ,

and for c = c/\\ CÖ"1 ||, || (Ù(X - T) u ||F ^ c \\ u \\ Vw e X. Let us take an
arbitrary uh e Xh, Then there exists vh e Vh such that rh vh = uh. We have
II vh || > (l/d) || wh ||fc and Vxh e Xft || x j | h > l/d \\ ph xh ||F, where

for any A. Hence

|| (X - T h ) u h \\h =\\(X- T h ) rh vh \\h ^ 2

= \\\<ù(X-T)vh+ X(Ph rh - o) vhd x

^ ™ i II uh\\h(c~\X\^h ~ 5 h ) .

Thus,forgivenXG p(T) there exists h0 such that for h < h0

what means, according to Définition 2, that { Th} is stable at X.

Remark 1 : In the case of an internai approximation of X, when F = X,
Xh = Vh cz X and œ and ph are identity maps, and rh are projections of X on
Xh, the condition (2.2) is automatically satisfied with sh = 0. In turn, the
condition (2.1) takes the form || (T — Th) \ Xh || ^ 0 i.e. the assumption of
Lemma 1 in [5].

In the gênerai case of an external approximation we have Eh # 0. Thus, we
must analyse how s(Vh) dépends on { Vh} e êF. To do this we introducé the
following numbers characterizing the subspaces Vh :

y ( F , ) - sup || Ö* H l , (2.3)
veVh

\\v[\ = l

where Qh (h e J f ) are some given linear and bounded projections of X onto
N(rh).

Let Vh = (1 - Qh) X. In this case y(Vh) = 0.

VOL. 18, N° 2, 1984



164 T. REGINSKA

We can state the following resuit :

LEMMA 2 : Let us assume that z(Vh) -• 0 as h -> 0. Then e(Vh) -• 0 for
{Vh}e^ if and only ify(Vh) -> 0.

Proof :

e(Vh) = sup || <ùQh v + ©(1 - GO t> - />* rfc(l - Qh)v \\F >
ueKh

11*11=1

- ( 1 +y(Vh))e(Vh).

The implication " => " follows from the above inequality.
It is easy to see that

s(Vh) < sup { || œ ||. || Qhv || + || ( 1 - 00 v || 8(Fft)} < y(Vh) \\ œ

lkll = i

which ends the proof of Lemma 2.
In the case when the Xh are infinité dimensional spaces the condition (2.2)

becomes very strong, so another version of Lemma 1 will be more useful in
this special case. Let us introducé the following

DÉFINITION 3 : The family {Vh}, Vh cz X is asymptotically equivalent to
{ Xh } with respect to {rh} {rh G JS? (X, Xh\ rHX = rhVh = Xh) if the rh are
uniformly boundedand inf || rh x \\h ̂  c > 0, VA G 3%.

xeVh

LEMMA 3 : Ifthere exist {rh} and { Vh } asymptotically equivalent to { Xh}

with respect to {rh} such that

ê(Vh)-.= sup KT-CrJ^-^rOHI-O,
veVh

||t; | | = 1

then {Th} is stable at any X e p(T).

Proof : Let us take uh e Xh. Let vh G Vh be such that rh vh = uh :

II (>- ~ Th)uh \\h = || (X - T O ?* «fc L = || ?„(?„ l ^ ) " 1 (A. - Th) rh vh \\h ^

>c\\Xvh- Tvh +(T-(rh\Vhy1Thrh)vh\\

>c\\(X-T)vh\\- $(Vh) || vh || .

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Smeek G p(T), there exists a constant c1 > Osuchtha t | | (X— T)vh \\ ^ c1 || vh\\.

Moreover, || vh || ^ ^—r \\ uh \\h. Iic2 '•= sup || rh ||, then
II r h

what proves Lemma 3.
Now, we are going to give a short analysis of the assumptions of the above

lemma To do this we restrict our considérations to the case of separable
Hilbert spaces.

LEMMA 4 : For an arbitrary separable Hilbert space X andafamily of separable
Hilbert spaces Xh there exist uniformly bounded maps rh : X -• Xh such that the
orthogonal compléments of the null spaces of rh form a family asymptoticaïly
equivalent to { Xh } with respect to { rh } .

Proof: Let { u„ }™=i and { uh
n }™=1 be or thonormal bases in X and Xh

respectively. If Xh is /c-dimensional, we put wj = 0 for j > k. Transformat ion

cp : X - • l2 and cpft : Xh - • l2 are defined as follows :

<pu - { (M, UX\ (M, M2), ... } for w e l ,

<pfc v = { (Ï?S MÏ)fcï (i>, «5)fc,... } for i ) e l f t .

Thus Vu G X || cpw | j l 2 = || M || and V { xn } G l2

Similarly || cpft || = 1 and cp^"1 : cpfe Xh -+ Xh, || <p~x || = 1. Let Ph be the

orthogonal projection from l2 onto cp,, Xh. Let

Tft :== Cp|j rh Cp . A —> A ^ , ^Z . DJ

For any ve X \\ rhv \\h ^ \\ v \\ and since (pVh = cpft Xh9 rh \Vh = cp^"1 9 \Vh

and (rh I^J"1 = cp"1 cpft. Thus | (rh | F h ) - 1 || = 1. Hence { Vh } is asympto-
tically equivalent to { Xh} with respect to { rh }.

Now, let us take arbitrary éléments v eVh and x G N(rh). For v there exists

uv e Xh such that (1;, M£) = (wy, MJ), / = 1, 2,... Hence (v, x) - ^ K> w?) (x ' wi)-

VOL. 18 ,N°2, 1984



166 T. REGINSKA

Since cpx _L <ph Xh9 £ O, w.) (u, u\) = 0 for any u e Xh9 so it also holds for
u = uv. Thus (v, x)i=10 for any ve Vh and x e N(rfc), what means that Vh is
orthogonal to N(rh).

Let Qft be orthogonal projection onto N(rh), and Vh be complementary
subspace of N(rh) in X. Thus

inf || rh v \\h - inf II rh Qhv + rfc(l - ÔJ ̂  II =
veVh

\\\
veVh

= inf ||(l-ÔfcH
Iio-e*) H

Using the notation (2.3) we obtain

inf II rhv

I M I = 1

inf || Cl — O*) « || - inf \\rh x\\h.
veVh x±N(rh)
\v\\ = l | | x | | - l

inf

This leads us to the following remark ;

Remark 2 : Let { i V ^ ) 1 } be asymptotically equivalent to { Xh } with
respect to { rh }. If 3c0 > 0 such that V/z < /*0 1 - y(Th) ^ c0 then the family
{ Vh } is also asymptotically equivalent to { Xh} with respect to { rh}.

Remark 3 : If { Fh } satisfies the condition (2.2), then {
tically equivalent to { Xh } with respect to { rh }.

This follows from the inequalities : Vu e Fh, || Ü || = 1 :

tg i l A ^ ~ | l II

} is asympto-

Since || ph\\ ^ a and || coi;
CÛ

^ -

u ||, we have

for any v e Vh and || i; || = 1.

R.A.I.R.O. Analyse numérique/Numerical Analysis
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3. APPROXIMATION OF EIGENELEMENTS OF T

In this section the proofs of the theorems are based on the ideas contained
in [5] and [2].

Let F be a Jordan curve in the résolvent set p(T). If { Th } is stable for all
XeT, then V c p(Th) for sufficiently small h < h0. Hence, we can defïne the
spectral projectors E : X -» X and Eh : Xh -• Xh by

LEMMA 5 : If the assumption A2 is satisfied and {Th} is stable on F , then
\fv G X l im || rh Ev - Ehrhv \\h = 0.

h-O

Proof : From the définition of E and Eh and from the identity

rh(X - T)-> ~(X- T J - 1 rh = (X - ThYHThrh - rhT)(X - T)~x

it follows that for given ve X

\\rhEv - Ehhv\\ <JIisup||fl, - Thy\Thrh- r„T)(X - TT1 Hl =

where U = {we X :u = (X - T^-^^eT}.
The operators (X — T^1 are uniformly bounded for X e F and h < h0

since the stability of { Th } on F. Thus, by the assumption A2,

V« e A" || (X - Thy \Th rh - rh T) u || -» 0 .

Moreover,

|| ( X - T O - ^ r ^ - r , T) || < || (X-TJ"1 r„ T || +|| X(X- T,)"1 r, || +|| rh ||,

so the operators (X — Th)~
1(Thrh — rhT) are uniformly bounded for

and h < h0. Thus, since the set U is compact,

s u p I (X - Thy \Th rh-rhT)u | | - > 0 .

VOL. 18, N«25 1984



168 T. REGINSKA

L E M M A 6 : If Al and A2 are satisfied and {Th} is stable on F , then

Vu e EX inf || cou — p h y h \\F -> 0 .

Proof: Since

inf \\(ùv-phyh\\F ^ \\<ov-pkrhv\\F + \\ph\\ \\ rhEv - Ehrhv ||„,

the proof follows immediately from Lemma 5.
As usually, <J(T) dénotes the spectrum of T. Let Q c C be an open domain

with the boundary F c= p(T) which is a Jordan curve. Finally, let

THEOREM 1 : If the assumptions A1 and A2 are satisfied and {Th} is stable

in p(T) then :

1° if Q n o(T) ^ 0 then o(Th) n Q / 0 for sufficiently small h,

2° if k0 G a(T) and 3ÔO > 0 : K(k0, 50) n a(T) = { Xo} then VO < 5 < 80,
0 ^ <j(Th) n X(A,0, 50) c= K(k0, Ö) /or sufficiently small h,

3° !ƒ ̂  G o(Th) and Xh -+ Xo then Xo G a(T).

Proof: It follows from Lemma 5 that VÜ e EX inf \\rhv — yh \\h -• 0.

If u # 0 then, since Al, rh v / 0 for sufficiently small /*. Thus 1° is proved.
For the proof of 2° it is enough to remark, that for

0 < S < 80 K(X, 60)\int K(A, 5) c p(T)

and thus, by the stability of { Th }, K(k, ôo)\int K(k, S) is contained in
p(Th) for /i < h0. Assume now that Xh G o(Th) and A.h -> Xo ̂  a(T). Thus there
exists S > 0 such that K(A,0, S) c p(T) and from the stability K(^o, S) c p(Th)
for h < h0, what means that for h < Als Xft G p(Th).

The above theorem gives convergence of eigenvalues, but without préser-
vation of the algebraic multiplicities. Namely, we have only

T H E O R E M 2 : If A 1 and A2 are satisfied and {Th} is stable on F then

1° dim EX = oo => dim Eh Xh -> oo
2° d im EX = n ^ dimph Eh Xh ^ n.

: Let { ut }™= x be a linearly independent set of éléments of £ X From
Lemma 6 it follows that for every finite number

N Ve 3he VA < he Vi - 1,..., AT 3x? e Eh Xh : || cm/; - /?h JC* ||F < e.

R.Â.I.R.O. Analyse numérique/Numerical Analysis
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Thus ViV < oo 3hN VA < hN dimph Eh Xh ^ JV, hence 1°.
Let now dim EX = n. By Lemma 6 we have

sup inf || ou - phyh \\p -> 0 .
ve£X yhe£hX
ll"ll = l

Using the known notation (cf. [7] chap. IV) : for closed subspaces 7, Z of X

8(7, Z) = sup inf || >> -z ||, (3.1)

we have 5(<tiEX,ph Eh Xh) -• 0. It is known that if 8(7, Z) < 1 then
dim 7 ^ dimZ(c/ [7] chap. IV, Corollary 2.6). Thus

n = dim coEX ^ dim ph Eh Xh.

Under additional assumptions we can state the following result :

THEOREM 3 : One supposes Al, A2 and stability of {Th} on F. Moreover

let || ph uh — f \\F -> 0, where uh e Xh, imply that f belongs to coX, and let the

norms in F and Xh be asymptotically equivalent (Le. ifuh e Xh and \\ ph uh \\F -> 0

then || uh\\h^> 0). Then if xh e Eh Xh and \\ ph xh - f \\F -> 0 then f e (oEX.

Proof : If || ph xh — f || -• 0 then there exists xoe X such that ƒ = cox0.
It remains to show that Ex0 = x0. From the inequality

kXo\\F-\\PHEk(rhXo-xh)\\P

w e g e t

II Ex0 - x 0 || ^ || co~ * II [II CÖX0 - ph x h IIF + II mEx0 - ph rh Exö \\F +

+ lift II \\rhEx0-Ehrhx0\\h + \\pkEh\\ lk„x0 - xj |„].

The convergence \\ph xh — coxo || -> 0 implies ||/?fc rfcx0 - p h x h ||F -> 0 and
thus, by the additional assumption on ph, \\ rh x0 — xh \\h -• 0. By Lemma 5
and 4̂1 we have : Ve 3h0 VA < Ao || Ex0 — x0 \\ ̂  e, thus ^XQ = x0 .

4. STRONG STABILITY OF { Th }

Let D e C be a domain limited by the Jordan curve F ei p(T). Let E and
Eh be the spectral projections associated with the spectrum of T and Th inside F.
We will assume that dim EX < oo. With respect to the convergence of eigen-
vectors it is very important to have the same dimensions of Eh Xh (orph Eh Xh)

VOL. 18,N<>2, 1984



170 T. REGINSKA

and EX. We will use the notion of strongly stable approximation { Th}
similar to that introduced by F. Chatelin in [4].

DÉFINITION 4 : An approximation { Th }, stable on F, is strongly stable on F
if dim EX = dim/?,, Eh Xhfor h small enough.

The convergence of external approximation (i.e. A\\ the consistency of
{ Th } to T (i.e. A2) and the stability of { Th } are not sufficient for strong
stability of { Th }, so we need a stronger assumption.

L E M M A 7:If{Th} is stable on F and

\\(Thrh-rhT)(X-T)-i\\h^0 for X E T (3.2)

then \\rhE~ Eh rh \\*iXM -> 0.

Proof : Repeating argumentation of the proof of Lemma 5 we get
|| rh E - Eh rh || ^ c0 || (Th rh - rhT)(X - T)'1 || for a some constant c0.

LEMMA 8 : If there exists { Vh} e 3F such that V/i < h0

i\h:= inf \\phrhx\\F ^ s 0 > 0
xeVh

11*11 = 1
then

§(Ph Eh xh> ®EX) < — \\Pk Eh rh - © £ || .eo

Proof : Let Vh be a subspace of Vh such that rft Vh = Eh Xh. Then

II ph Eh rh - (ùE || ^ sup inf || p h Ehrhx - coy \\ ^

^ sup inf | | p h r h x ~ a y \\ > inf \\phrhx\\ sup inf ||/?h xh-(oy \\.

11*11 = 1 11*11 = 1 l | P h * h | | - l

According to (3.1) the last factor is equal to 6(ph Eh Xh, coEX).

THEOREM 4 : Ifthe assumptions A1, (2.1), (2.2), (3.2) are satisfied, then {Th}
is strongly stable on F.

Proof.lt follows from (2.2) that
i

inf || cox ||F — sup || ph rh x —|| ||F p | | p h h ||F
xeVh XeVh II©
11*11 = 1 11*11 = 1

R.A.I.R.O. Analyse numérique/Numencal Analysis
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thus v[h ^ e0 > 0 for sufficiently small h. Moreover, since dim EX < oo, by
Lemma 7

\\pkEhrh-<ùE\\ ^ lift || \\Ehrh-rhE\\ + || (phrh - ©)£|| -> 0.

Hence, from Lemma 8 we get 8{ph Eh Xh, (oEX) < 1 for h small enough and
thus dim ph Eh Xh < dim G>EX. The oposit inequality have been obtained in
Theorem 2, thus dim ph Eh Xh = dim EX.

The assumption (2.2), which is very strong in the case of infinité dimen-
sional spaces Xh, can be ommited as it is shown in the following.

T H E O R E M 5 : Let A \ be satisfied. Moreover, let {Vh} be asymptotically
equivalent to { Xh } with respect to { rh } and { Xh } be asymptotically equivalent
to {phXh} with respect to {ph}. If

\\[T~(rh\vX
1Thrh](X~T)~l\\^0 for XeT (3.3)

then {Th} is strongly stable on T.

Proof: It follows from (3.3) that

3c> 0 V/* < h0 V^ e T \\(rh WX'Q - Th) rh(X - T ) " 1 || ^ c.

On the other hand

Urh\vr
i^-Tk)'-H^-T)-1H\\X-Th\\ \\(rh\Vh)-l\\ II Ml | | ( X - T ) - l | | .

Thus, by the uniform boundness of || ( ^ l ^ ) ' 1 || and || rh \\ we obtain that
|| X - Th\\ ^ Ci > 0 for h < h0 and À, e T, what gives the stability of { Th }
onT.

Moreover, (3.3) implies (3.2). Thus, by Lemma 7, \\rhE- Ehrh || -> 0,
what implies || ph Eh rh — wE \\ -• 0, since dim EX < oo. The assumption on
asymptotic équivalence of { Vh }, { Xh } and { ph Xh} guaranties the existence
of positive lower bound for r\h. Hence, by Lemma 8, ?>(ph Eh Xh, (ÖEX) -+ 0.
Thus dim ph Eh Xh ^ dim (oEX what together with Theorem 2 gives :
dim ph Eh Xh = dim Eh Xh = dim EX for sufficiently small h.

The condition (3.3) imposed on the approximation is some modification
of radial convergence introduced in [2,3] for the case of internai approximation.

VOL. 18, NO 2, 1984



172 T. REGINSKA

5. APPLICATION

Let X be a Hubert space with the scalar product a(,). Let b be a bounded
sesquilinear form defined on X x X. The eigenvalue problem for two forms

b(u, v) = \a(u, v) VveX (5.1)

is considered This problem is equivalent to the eigenproblem for an operator T
defined by : b(u, v) = a(Tu, v) Vw, v e X. Let V be a dense subspace of X.
We wilî consider approximate methods of solving the problem (5.1) which
are generated by séquences of sesquilinear forms an and bn defined on F x F.
It is assumed that ann = 0, 1,... are symmetrie and positive défini te and bn

are bounded with respect to an, i.e. Vw, V G V \ bn{u, v) | ^ cn a*l2(u, u) ali2(v, v).
Let Xn be the closure of V in the norm a\12, n = 0, 1,... The n-th approximate
eigenvalue problem has the form

flnd XeC and 0 # u e X„ such that
(5.2)

which is equivalent to the eigenproblem for an operator Tn defined by an and
bn : bn(u, v) = an(Tn w, v) Vu e F, w e Xn. Under the assumptions

a0 ^ an ^ a, (5.3)

a is quasi-bounded with respect to a0, i.e. there exists a symmetrie operator L
in Xo, with dense domain F, such that a(u, v) = ao(Lu, v) Vu,veV (cf. [1]),

(5.4)

the approximation (5.2) can be described in terms of external approximation
(for details see [8]).

From (5.3) and (5.4) it follows that a is quasi-bounded with respect to
an, n = 1, 2,... Let Ln be the symmetrie operator defined by a(u, v) = an(Ln u, v)
Vu, v e F, and let Ln dénote its selfadjoint extension in Xn. Ln is positive definite.
Thus, there is a unique positive definite and self-adjoint square root L*/2 of Ln

and the domain D(Ln) of Ln is dense in D(L^/2). It can be proved (see [8]) that
D(Ln

1/2) = X and Vw, vsX a(u, v) = a„{L^2 u, Ln
1/2 v). Let us put rn := Ln

1/2.
It is easy to show (see [8]) that || rn \\#{X,xn) ~ II rül W&(xnx) = -̂ ^ e define
pn -= r~x. The approximation { Xn, rn, pn } is convergent in X due to Défi-
nition 1. The following property can be proved (see [8]) :

R.A.LR.O. Analyse numérique/Numerical Analysis
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LEMMA 9 : Let (5.3) and (5A)be satisfied and moreover

VueV sup | a„(w, v) - a(u, v) \ -• 0 , (5.5)
veV

\\v\\ = l

sup | bn(u, v) — b(u, v) | -> 0. (5.6)

Let || un ||B < M a n d || wB ||B < Mn = 0, 1,... for some M.

If an(un, w) - • Û(M, W) VH> e K, and an(ünS w) - • a(t;, w)VweK imply

6«(«i,^«)-^ 6(ii, Ü) , (5.7)

then { Tn} is stable at any Xep(T).
Let us remark, that in the considered case the condition (2.1) of Lemma 1

implies A2 and (3.2). Thus we have

COROLLARY 1 \ If the assumptions (5.3)-(5.7) are satisfied then the method
is convergent in the sense of Theorems 1 to 4.

The class of methods described above has been investigated by R. D. Brown
in [1] by using the another theory. He adopts the theory of discrete convergence
of Banach spaces in the form developed by Stummel [10]. His results are similar
to those obtained above.
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