Convergence of the discrete free boundaries for finite element approximations
RAIRO. Analyse numérique, Tome 17 (1983) no. 4, pp. 385-395.
@article{M2AN_1983__17_4_385_0,
     author = {Brezzi, F. and Caffarelli, L. A.},
     title = {Convergence of the discrete free boundaries for finite element approximations},
     journal = {RAIRO. Analyse num\'erique},
     pages = {385--395},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {17},
     number = {4},
     year = {1983},
     mrnumber = {713766},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1983__17_4_385_0/}
}
TY  - JOUR
AU  - Brezzi, F.
AU  - Caffarelli, L. A.
TI  - Convergence of the discrete free boundaries for finite element approximations
JO  - RAIRO. Analyse numérique
PY  - 1983
SP  - 385
EP  - 395
VL  - 17
IS  - 4
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1983__17_4_385_0/
LA  - en
ID  - M2AN_1983__17_4_385_0
ER  - 
%0 Journal Article
%A Brezzi, F.
%A Caffarelli, L. A.
%T Convergence of the discrete free boundaries for finite element approximations
%J RAIRO. Analyse numérique
%D 1983
%P 385-395
%V 17
%N 4
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1983__17_4_385_0/
%G en
%F M2AN_1983__17_4_385_0
Brezzi, F.; Caffarelli, L. A. Convergence of the discrete free boundaries for finite element approximations. RAIRO. Analyse numérique, Tome 17 (1983) no. 4, pp. 385-395. http://www.numdam.org/item/M2AN_1983__17_4_385_0/

[1] C Baiocchi, « Estimations d’erreur dans L pour les inéquations à obstacle » in « Mathematica! Aspects of Finite Element Methods », Lecture Notes in Math 606, Springer, 1977 | MR | Zbl

[2] L A Caffareli, A remark on the Hausdorff measure of afree boundary, and the convergence of coincidence sets , Bollettino U M I (5) 18 A (1981) 109-113 | MR | Zbl

[3] P G Ciarlet, Fonctions de Green discretes et principe du maximum discret, Thesis Univ Paris (1971)

[3] P G Ciarlet, The finite Element Methods for Elhptic Problems, North-Holland (1978) | MR | Zbl

[5] P G Ciarlet, P-A Raviart, Maximum principle and uniform convergence for the finite element method, Comput Math Appl Mech Engrg 2 (1973) 17-31 | MR | Zbl

[6] J Nitsche, « L -convergence of finite element approximations, in «Mathematical Aspects of Finite Element Methods», Lecture Notes in Math 606, Springer, 1977 | MR | Zbl

[7] R Rannacher, Zur L -Konvergenz linearer jiniter elemente beim Dinchlet problem, Math Z 149 (1977) 69-77 | MR | Zbl

[8] R Scott, Optimal L -estimates for the finite element method on irregular meshes, Math Comput 30 (1976) 681-697 | MR | Zbl