A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media
RAIRO. Analyse numérique, Tome 17 (1983) no. 3, pp. 249-265.
@article{M2AN_1983__17_3_249_0,
     author = {Douglas, Jim Jr. and Ewing, Richard E. and Wheeler, Mary Fanett},
     title = {A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media},
     journal = {RAIRO. Analyse num\'erique},
     pages = {249--265},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {17},
     number = {3},
     year = {1983},
     mrnumber = {702137},
     zbl = {0526.76094},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1983__17_3_249_0/}
}
TY  - JOUR
AU  - Douglas, Jim Jr.
AU  - Ewing, Richard E.
AU  - Wheeler, Mary Fanett
TI  - A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media
JO  - RAIRO. Analyse numérique
PY  - 1983
SP  - 249
EP  - 265
VL  - 17
IS  - 3
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1983__17_3_249_0/
LA  - en
ID  - M2AN_1983__17_3_249_0
ER  - 
%0 Journal Article
%A Douglas, Jim Jr.
%A Ewing, Richard E.
%A Wheeler, Mary Fanett
%T A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media
%J RAIRO. Analyse numérique
%D 1983
%P 249-265
%V 17
%N 3
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1983__17_3_249_0/
%G en
%F M2AN_1983__17_3_249_0
Douglas, Jim Jr.; Ewing, Richard E.; Wheeler, Mary Fanett. A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO. Analyse numérique, Tome 17 (1983) no. 3, pp. 249-265. http://www.numdam.org/item/M2AN_1983__17_3_249_0/

1. J. Douglas, Jr., Effective time-stepping methods for the numerical solution of nonlinear parabolic problems, The Mathematics of Finite Eléments and Applications III, MAFELAP 1978, J. R. Whiteman (éd.), Academic Press, 1979. | MR | Zbl

2. J. Douglas, T. Dupont and P. Percell, A time-stepping method for Galerkin approximations for nonlinear parabolic équations, Numerical Analysis, Dundee 1977, Lecture Notes in Mathematics 630, Springer, 1978. | MR | Zbl

3. J. Douglas, T. Dupont and R. E. Ewing, Incomplete itération for time-stepping a nonlinear parabolic Galerkin method, SIAM J. Numer. Anal., 16, 1979, pp. 503-522. | MR | Zbl

4. J. Douglas, R. E. Ewing and M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Analyse numérique, 17, 1983, pp. 17-33. | Numdam | MR | Zbl

5. J. Douglas, M. F. Wheeler, B. L. Darlow and R. P. Kendall, Self-adaptive finite element simulation of miscible displacement, to appear in SIAM J. Scientific and Statistical Computing.

6. R. E. Ewing and T. F. Russell, Efficient time-stepping methods for miscible displacement problems in porous media, SIAM J. Numer. Anal., 19, 1982, pp. 1-67. | MR | Zbl

7. R. E. Ewing and M. F. Wheeler, Galerkin methods for miscible displacement problems in porous media, SIAM J. Numer. Anal., 17, 1980, pp. 351-365. | MR | Zbl

8. C. Johnson and V. Thomée, Error estimates for some mixed finite element methods for parabolic problems, RAIRO Analyse numérique, 15, 1981, pp.41-78. | Numdam | MR | Zbl

9. D. W. Peaceman, Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, oc. Pet. Eng. J. (1966), pp. 213-216.

10. D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, 1977

11. P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer, 1977. | MR | Zbl

12. T. F. Russell, An incompletely iterated characteristic finite element method for a miscible displacement problem, Thesis, University of Chicago, June 1980.

13. A. H. Schatz, V. Thomée and L. Wahlbin, Maximum norm stability and error estimates in parabolic finite element équations, Comm. Pure Appl. Math., 33, 1980, pp. 265-304. | MR | Zbl

14. R. Scholz, L -convergence of saddle-point approximations for second order problems, RAIRO Analyse numérique, 11, 1977, pp. 209-216. | Numdam | MR | Zbl