Conforming equilibrium finite element methods for some elliptic plane problems
RAIRO. Analyse numérique, Tome 17 (1983) no. 1, pp. 35-65.
@article{M2AN_1983__17_1_35_0,
     author = {K\v{r}{\'\i}\v{z}ek, Michal},
     title = {Conforming equilibrium finite element methods for some elliptic plane problems},
     journal = {RAIRO. Analyse num\'erique},
     pages = {35--65},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {17},
     number = {1},
     year = {1983},
     mrnumber = {695451},
     zbl = {0541.76003},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1983__17_1_35_0/}
}
TY  - JOUR
AU  - Křížek, Michal
TI  - Conforming equilibrium finite element methods for some elliptic plane problems
JO  - RAIRO. Analyse numérique
PY  - 1983
SP  - 35
EP  - 65
VL  - 17
IS  - 1
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1983__17_1_35_0/
LA  - en
ID  - M2AN_1983__17_1_35_0
ER  - 
%0 Journal Article
%A Křížek, Michal
%T Conforming equilibrium finite element methods for some elliptic plane problems
%J RAIRO. Analyse numérique
%D 1983
%P 35-65
%V 17
%N 1
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1983__17_1_35_0/
%G en
%F M2AN_1983__17_1_35_0
Křížek, Michal. Conforming equilibrium finite element methods for some elliptic plane problems. RAIRO. Analyse numérique, Tome 17 (1983) no. 1, pp. 35-65. http://www.numdam.org/item/M2AN_1983__17_1_35_0/

[1] D. J. Allman, On compatible and equilibrium models with linear stresses for stretching of elastic plates, in [27]. | Zbl

[2] F. Brezzi, Non-standard finite elements for fourth order elliptic problems, in [27]. | Zbl

[3] G. R. Busacker and T. L. Saaty, Finite graphs and network : an introduction with applications, McGraw-Hill, New York, London, Sydney, 1965. | MR | Zbl

[4] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland publishing company, Amsterdam, NewYork, Oxford, 1978. | MR | Zbl

[5] G. Duvaut and J. L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, Heidelberg, NewYork, 1976. | MR | Zbl

[6] M. Fortin, Approximation des fonctions à divergence nulle par la méthode des éléments finis, Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Paris, 1972, vol. 1, 99-103. | MR | Zbl

[7] B. M. Fraeijs De Veubeke and M. Hogge, Dual analysis for heat conduction problems by finite elements, Internat. J. Numer. Methods Energ. 5 (1972), 65-82 | Zbl

[8] V. Girault and P. A. Raviart, Finite element approximation of the Navier-Stokes equation, Springer-Verlag, Berlin, Heidelberg, New York, 1979. | MR | Zbl

[9] R. Glowinski and O. Pironneau, On numerical methods for the Stokes problem, in [27]. | Zbl

[10] B. J. Hartz and V. B. Watwood, An equilibrium stress field model for finite element solution of two-dimensional electrostatic problems, Internat. J. Solids and Structures 4 (1968), 857-873. | Zbl

[11] J. Haslinger and I. Hlavacek, Convergence of a finite element method based on the dual variational formulation, Apl. Mat. 21 (1976), 43-65. | MR | Zbl

[12] I. Hlavacek, Convergence of an equilibrium finite element model for plane elastostatics, Apl. Mat. 24 (1979), 427-457. | MR | Zbl

[13] I. Hlavacek, The density of solenoidal functions and the convergence of a dual finite element method, Apl. Mat. 25 (1980), 39-55. | MR | Zbl

[14] C. Johnson, On the convergence of a mixed finite element method for plate bending problems, Numer. Math. 21 (1973), 43-62. | MR | Zbl

[15] C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Maht. 30 (1978), 103-116. | MR | Zbl

[16] D. W. Kelly, Bounds on discretization error by special reduced integration of the Lagrange family of finite elements, Internat. J. Numer. Methods Energ. 15 (1980), 1489-1506. | MR | Zbl

[17] M. Krizek, An equilibrium finite element method in three-dimensional elasticity, Apl. Mat. 27 (1982), 46-75. | MR | Zbl

[18] B. Mercier, Topics in finite element solution of elliptic problems, Springer-Verlag, Berlin, Heidelberg, New York, 1979.

[19] J. Necas, Les méthodes directes en théorie des équations elleptiques, Academia, Prague, 1967. | MR

[20] J. Necas and I. Hlavacek, Mahtematical theory of elastic and elasto-plastic bodies : an introduction, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1981. | MR | Zbl

[21] A. R. S. Ponter, The application of dual minimum theorems to the finite element solution of potential problems with special reference to seepage, Internat. J. Numer. Methods Energ. 4 (1972), 85-93. | MR | Zbl

[22] G. Sander, Application of the dual analysis principle , Proceedings of the IUTAM Symposium on High Speed Computing of Elastic Structures, Congrès et Colloques de l'Université de Liège (1971), 167-207.

[23] R. Temam, Navier-Stokes equations North-Holland publishing company, Amsterdam, New York, Oxford, 1977. | MR | Zbl

[24] J. M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thesis, Université Paris VI, 1977.

[25] J. M. Thomas and M. Amara, Approximation par éléments finis équilibre du système de l'élasticité linéaire, C.R. Acad. Sc. Paris, t. 286 (1978), 1147-1150. | MR | Zbl

[26] J. M. Thomas and M. Amara, Equilibrium finite elements for the linear elastic problem, Numer. Math. 33 (1979), 367-383. | MR | Zbl

[27] Energy methods in finite element analysis, John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, 1979. | MR