@article{M2AN_1982__16_3_211_0, author = {Hermeline, F.}, title = {Triangulation automatique d{\textquoteright}un poly\`edre en dimension $N$}, journal = {RAIRO. Analyse num\'erique}, pages = {211--242}, publisher = {Centrale des revues, Dunod-Gauthier-Villars}, address = {Montreuil}, volume = {16}, number = {3}, year = {1982}, mrnumber = {672417}, zbl = {0567.65083}, language = {fr}, url = {http://www.numdam.org/item/M2AN_1982__16_3_211_0/} }
TY - JOUR AU - Hermeline, F. TI - Triangulation automatique d’un polyèdre en dimension $N$ JO - RAIRO. Analyse numérique PY - 1982 SP - 211 EP - 242 VL - 16 IS - 3 PB - Centrale des revues, Dunod-Gauthier-Villars PP - Montreuil UR - http://www.numdam.org/item/M2AN_1982__16_3_211_0/ LA - fr ID - M2AN_1982__16_3_211_0 ER -
Hermeline, F. Triangulation automatique d’un polyèdre en dimension $N$. RAIRO. Analyse numérique, Tome 16 (1982) no. 3, pp. 211-242. http://www.numdam.org/item/M2AN_1982__16_3_211_0/
[1] On the angle condition in the finite element method, Siam J Num Anal, Vol 13, n° 2 (1976) | MR | Zbl
et ,[2] Geometrie tome 3 convexes et polytopes, polyedres réguliers, aires et volumes, Fernand Nathan Paris (1978) | Zbl
,[3] Construction of Vornot polyhedra, J Comp Phys 29 (1978), pp 81-92 | MR | Zbl
, et ,[4] Une methode heuristique de maillage dans le plan pour la mise en oeuvre des elements finis, These Paris (1978)
,[5] Automatic triangulation of arbitrary planar domains for the finite element method, Int J Num Meth Engng 8 (1974) pp 679-696 | Zbl
,[6] The finite element method for elliptic problems, North-Holland (1978) | MR | Zbl
,[7] Covering space with equal spheres, Mathematika 6(1959), pp 147-157 | MR | Zbl
, et ,[8] Sur la sphère vide, Bul Acad Sci URSS Class Sci Nat (1934), pp 793-800 | Zbl
,[9] A new convex hull algorithm for planar sets, ACM TMS, vol 3, n° 4 (1977), pp 398-403 | Zbl
,[10] Computing Dirichlet tesselations in the plane, The Computer Journal, vol 21, n°2 (1977), pp 168-173 | MR | Zbl
et ,[11] Une methode automatique de maillage en dimension n, These Paris (1980)
,[12] Two-dimensional Voronot diagrams in Lp-Metric, J of the ACM, vol 27, n° 4 (1980), pp 604-618 | MR | Zbl
,[13] Computer cartography point in polygon programs, Bit, 7 (1967), pp 39-64 | Zbl
et ,[14] Lagrangian method for the Navier-Stokes equations, Communication non publiée
,[15] Convex hull of finite sets of points in two and three dimension, Comm of the ACM, vol 20, n°2 (1977), p 87 | MR | Zbl
et ,[16] Locally equiangular triangulations, Comp J , vol 21, n° 3 (1977), p 243 | MR
,[17] A brief review of techniques for generating irregular computational grids, Int J Num Met Engng, vol 15 (1980), pp 1335-1341 | Zbl
,[18] Computing the n-dimensional Delaunay tesselation with application to Voronot polytopes, The Computer Journal, vol 24, n° 2 (1981) | MR
,[19] Computing Dirichlet tesselations, The Computer Journal, vol 24, n° 2 (1981) | MR
,