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R A I R O Analyse numerique/Numencdl Analysis
(vol 16, n ° l , 1982, p 5 a 26)

SINGLE STEP METHODS FOR INHOMOGENEOUS LINEAR
DIFFERENTIAL EQUATIONS IN BANACH SPACE (*)

by Philip BRENNER (L) , Michel CROUZEIX (2) and Vidar THOMÉE (*)

Abstract — Considenng the imtial-value problemjor the differential équation

u(t) = Au(t) + J(t)

in a Banach space X, where A générâtes a bounded semigroup on X, we analyze single step discreti-
zations oj thejorm

un+i = r{kA) un + k f qffcA) j(nk + z} k),
J=I

where k is the step size, r,qt, ,qm are rationaljunctions, bounded jor Re z ^ 0, and x} are quadrature
points in [0, 1]

Resumé — On considère le problème aux conditions initiales pour l équation dijjerentielle

u'(t) = Au(t) + f(t)

dans un espace de Banach X, ou A engendre un semi-groupe borne sur X, et on analyse des discréti-
sations a un pas du type

un+ ! - r(kA) un + k £ q/fcA) f(nk + Tj k),

ou k est le pas, r,qt, tqm sont des fonctions rationnelles, bornées pour Re z ^ 0, et Xj sont des points
de quadrature sur [0, 1]

1. INTRODUCTION

Let X be a Banach space and assume that A is a closed, densely defined linear
operator on X which générâtes a bounded semigroup E(t) — etA on X The
solution of the initial value problem (with ut = du/dt)

Ut = Au + j for t ^ 0 , u(0) = v , (11)
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6 P. BRENNER et al

may then be expressed by means of Duhamel's principle as

u(t) = E(t)v + \ E(t - s)j(s)ds.

We shall be concerned with the discretization in time of the problem (1.1).
For this purpose, let k be a small positive time incrément and let r, qu ..., qm

be rational functions which are bounded for Re z ^ 0. Then, since A has its
spectrum in Re z ^ 0, r(kA ) and qfâA ) are well defîned, and we may seek an
approximate solution un at tn = nk of (1.1) by the recursion relation

un+ 1=Ekun-^ k(Qk j) ( g , n = 0,..., with uo = vt (1.2)

where

Ek = r(kA), (Qk j) (t) = £ qJLkA)J(t + x, k) 9

with { x3 }7 distinct quadrature points, for simplicity in [0, 1],
In order to express the degree of approximation of (1.2) we consider first

the case when A is a bounded operator. We say that the scheme is accurate of
order p if for any choice of ƒ and u, with j sufficiently regular with respect to t,
we have

pn = u(tn+l)-Eku(t,;)-k(Qkj)(tn) = Q(k?+') as fc^O, (1.3)

that is, if the solution of (1.1) satisfies (1.2) with an error of order 0(fcp+ *).
This will entail certain relations between r, the q} and the x3 which may be
stated, for instance, in the form

r(z) - e = 0{zp+1) as z -> 0 , (1.4)

and for / = 0,..., p - 1,

7J\ m

-77T K*)- X - ~ E ^ / ^ r 1 ) as z - 0 . (1.5)
z \ j = o 7 7

We observe that the global error en = u(tn) — un satisfies

en+1 = Ek en + Pn, » = 0, ...> with e0 = 0 .

Assuming that Ek is stable in X we shall hence be able to infer a 0(kp) global
error estimate from the local estimate (1.3).

We shall then turn to the case when A is an unbounded operator and discover

R A I R O Analyse numénque/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 7

that in order for the analysis to yield an estimate of the form (1.3) we need to
assume that u, in addition to being smooth in r, will have to satisfy relations
like u{l\t) G D(AP+ x ~l) for / = 0,...,/? + 1. In applications to partial differential
équations, this often demands not only smothness of uU) in the space variables,
but also that these functions satisfy certain boundary conditions which are not
natural to impose for / = 0,..., p — 1. In order to be able to avoid artificial
assumptions on the solution we shall consider schemes which satisfy a stronger
accuracy assumption than (1.3) : We say that the scheme is strictly accurate
of order p0 < p if the truncation error vanishes for all j and v such that the
solution is a polynomial in t of degree at most p0 — 1. It will turn out that
this condition is equivalent to demanding that the first p0 relations in (1.5)
hold with right hand sides replaced by zero. For schemes which are strictly
accurate of order p, or under a not very restrictive additional condition, accurate
of order p and strictly accurate of order p — 1, we shall then be able to show the
desired global error estimate.

The details of the above analysis are given in Section 2 below, where the
estimâtes are expressed in terms of the solution u of (1.1), and in Section 3
where error bounds in terms of the data j and v are presented.

Our main motivation for this study is the application to numerical methods
for partial differential équations, and to the situation when discretization also
takes place in the space variables. It may be the case, for instance, that an
initial value problem has been approximated in space by means of the finite
element method, leaving us with a semidiscrete problem of the form (1.1),
with AJy and v replaced by AhJhJ vh, depending on the small parameter h, and
such that the error in the solution of this problem is bounded by zh. In order to
produce a completely discrete method, the above scheme may now be applied
to the semidiscrete problem and one hopes that the total error will be Q(eh + kp).
An example of a resuit of this nature is shown in Section 4 below.

The construction of schemes satisfy ing our above assumptions is the object
of Section 5. It is seen, among other things, that if { x}}™ are chosen as the
Gaussian points of order ra in [0, 1], the scheme may be constructed to be
accurate of order 2 m, but with no choice of { T,- }7 can it be strictly accurate
of order m + 2.

A study which has many points in common with the present one was carried
out in Crouzeix [2] in the context of Runge-Kutta methods in a Hubert space.

Conditions for stability of operators of the form Ek = r(kA) in gênerai
Banach spaces were discussed in Brenner and Thomée [1]. The present results
together with those of [1] thus allow application to completely discrete schemes
obtained from semidiscrete approximations with known error bounds in, say,
the maximum norm.

vol. 16, no 1,1982.



8 P. BRENNER et al

2. ERROR ESTIMATES IN TERMS OF THE SOLUTION

We begin this section by deducing the conditions for the time discretization
scheme (1.2) to be accurate of order p and strictly accurate of order p0 ^ p,
in the sense introduced above. Assuming thus A to be a bounded operator
we obtain by Taylor series development of p„ with respect to /c, for u and j
sufficiently smooth with respect to t,

p ui m p - l (T k\l

pi \ ij/"*! f ï Y(K A 1 ilit ï K > n \

where

r'"'(t"+1 ~~.S)tV+1)(s)&-

Using the fact that y(1> = u ( l+1J - Aum this may be written

p„= £ n ^ ( ^ ) «(l)(g + *„,P
i = o £ •

where

ho(z) = 1 - r(z) + 2 £ 9^) '
J- i

fc^) = 1 - / £ xi"1 ^(z) + z f; xj^(z), for 1 < / < p - 1 ,

and
m

Since Rnp = 0(kp+1) for small fes this représentation of the truncation error
immediately yields the following lemma.

LEMMA 1 ; The scheme (1.2) is accurate oj order p ij and only ij

/z,(z) = 0 ( z p + 1 - < ) jor J = O , . . . , p . (2 .2)

It strictly accurate of order p0 < p *ƒ and OM/J; I/

0 > r / = 0, . . . ,p0 - 1 . (2.3)

R A 1 R O Analyse numénque/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 9

We shall now turn to the error estimâtes, allowing A to be unbounded.
For this purpose we shall first briefly discuss the représentation of functions of A
in terms of the semigroup E(t).

Let M dénote the set of Laplace transforms of bounded measures on R + ,

and recall (cj. [1]) that with A the generator of a bounded semigroup E(t) on X,
g(A) may be represented as

g(A)= f E(t)d\tt).

Noting that \i is uniquely determined by g, we may set

m(g)= [ d \ v i \ ( t ) 9

and obtain that g (kA) is a bounded operator on X, and for any k > 0,

|| g(kA) | < f || E(kt) || d | n | (t) ^ Co m(g), if || E(t) \\ < Co .
i* +

Any rational fonction g which is bounded for Re z ^ 0 belongs to M, as is
seen by expansion into partial fractions. In this case d\x has the form
S,- Pj(t) e~X}t dt where Xj are the poles of g and Pj are polynomials ; the above
représentation of g(A) then reduces to the Standard formulas for the résolvent
of A and its powers. Note also that if j9 g e M then jg e M and

U9)(A)=J(A)g(A).

Further, if j , g e M and g{z) - j(z) zl then g(A) v = f(A) Al v for v e D(Al)
(cj. Lemma 4 in [1]).

In particular, if (2.2) holds we have

ii/zJeM for Z = O,...,p,

and if (2.3) is satisfied as well, we may write the truncation error from (1.3) as

Pn = kP+1 f ^hl{kA)A»+l-lë'\t„) + Rn_p, (2.4)

vol. 16, n° 1,1982



10 P. BRENNER et al

provided «(0(O e D(Ap+i~l). In order to estimate this expression we use the
relation

fccp(O = (9(5) - (tn+1 - s) cp'(s)) ds ,

to obtain for / = p0,..., p,

k\\hl(kA)Ap+1-luil)(tn)\\ ^

^ (\\hl(kA)A^+1'lél\s)\\ + II kAhl(kA)A^luil+1\s)\\)dsi

and hence since Kt(z) and also zht{z) belong to M,

k\\hl(kA)Ap+l-lël\tn)\\ ^

C (11 A P + 1 ' 1 uil\s) II + II A*~l u{l+1)(s) II) ds .

f " l

For the remainder term Rnp we have at once from (2.1),

n ^+i\s)\\ + \\jip\s)\\)ds

Ckp f (y u^ " (s ) !| + II Au^(s) II) d s ,

and hence altogether

P + l /•«»!+ 1

IIP-II <CV % I yl^1"11/1^) I ds. (2.5)

We may now easily prove the following.

THEOREM 1 : Assume that the scheme (1.2) is accurate oj order p and strictly
accurate oj order pQ and let Ek be stable in X. Then ij u{l) e 1/(0, tn; D{AP+1~1))
jor l = pQ,..., p -h 1 we have

u(tn) - un I < Ck> ï
Jo

R.A.I.R.O. Analyse numérique/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 11

Prooj : Setting en = u{tn) - un we have since e0 = 0,

n - l

7 = 0

and hence by the stability of Ek,

\\en\\ ^ c Ç lip,- ||.

The result is now an immédiate conséquence of (2.5).
Note that the error estimate of Theorem 1 requires u(l) e D(Ap + i~l)) for

' = Po>-->P + 1 anc^ f positive. In applications to initial-boundary value
problems for partial differential équations this generally demands not only
smoothness of the solution but also that its time derivatives satisfy certain
boundary conditions. Although it is appropriate to assume u{p) e D(A), the
above conditions for / < p are undesirable and the case p0 = p is therefore of
special interest.

In our next resuit we shall show an optimal order error estimate without
requiring artificial boundary conditions if the scheme is strictly accurate of
order p — 1, only, but satisfies the additional condition

o(z) = hp_1(z)/(z(l -r(z)))eM. (2.6)

Since r{z) — 1 + z + 0(z2) for small z, it follows in particular that (2.6) holds
if r(i>) ^ 1 for 0 ^ y e R u { oo }, or more generally, if r{iy) # 1 for 0 ^ y e R
and qfz) = 0(| z \~l) and (r{z) - l ) " 1 = 0(| z \l) for large z and some / ^ 0.
For example, this condition is satisfied for the first and second subdiagonal Padé
approximations rjk{z\ 0 ^ j - k < 2, to é* (c/. [1], p. 687), and also for the
diagonal approximations r1 x(z) and r22(z), but is not valid for r23(z) as a simple
computation shows. Also (2.6) will be fulfilled for schemes employing the
restricted Padé approximants Rk(z) of orders k = 1,2, and 3 (cj. [1], p.

THEOREM 2 : Assume that the scheme (1.2) is accurate oj order p, and strictly
accurate oj order p — 1, r/iat (2.6) /zoWs and t/iat £k is stab/e in X. Then under
the appropriate regularity assumptions,

II u(tn) - M. H Cfc' | || y i i i ^ O ) I + f" (|| Au^(s) || + || té*+»(s) ||) ds 1 .

Prooj : We have from (2,4),

vol. 16, n° 1, 1982



12 P. BRENNER et al

The contribution to the global error of the last two terms is bounded as
indicated in Theorem 1 with p0 = p, and it remains to estimate

n - l

Sm= E Er1-i

j=0

By the définition of a we have kAïtp_1(kA) = a(kA)(I — Ek) and hence

(p - 1) !

We conclude

!

Ckp j || ylii^"1^,,) || + || ^'-"(O) || + f I Au{p\s) || ds \

which is bounded as desired.
In the case with order of strict accuracyp0 < p — 2 it is impossible in gênerai

to infer a 0(/cp) global error estimate without making assumptions of the type
u{l) e D(Ap~l). Consider for example the problem

ut = Au + p0 tpo~x w - tpo Aw for t ^ 0 , M(0) = 0 ,

with the solution u(t) = tpo w. Then

u(h) - ux = P l = /c"+1 ftpo(fe^)^^+1-^ w.

In order to have px = 0(/cp) we need kAhPQ(kA) Ap~po w to be bounded. This is
the case iîweD(Ap~P0) but not necessarily so if w is slightly less regular. To
demonstrate this, let I be a Hilbert space and let — A be self-adjoint,
positive definite, and unbounded. We shall show that px = 0(/cp) implies
w G D((— A)p~po~z) for any 8 > 0, and thus that if w fails to satisfy this requi-
rement for some small positive 8, then optimal order convergence cannot
take place. Let q>j be the eigenfunctions and Xj the corresponding eigenvalues
of — A, and let w = Ŝ  c} <pj e X. Since hpo is a rational function which does not
vanish identically there exist positive y and c such that | xhpo(x) | ^ c for

R.A.LR.O. Analyse numérique/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 13

y/2 ^ x ^ y and hence

C > || kAhjkA) A''"0 w || = E, | kXj Kjjck) l^"0 CJ |2

Hence for k = 2~{l+1\

Z I 1 P ~ P O ~ £ - |2 ^^ s-* *) — 21E

so that

Cj

1 = 0

which shows the desired conclusion w e D({- A)p po e). In a similar way we
can prove that p1 = 0(kp~a) implies weD({- A)p~po'a~£) for any e > 0.

As a concrete example we may take X = L2(0, l)and

ut = uxx + 2{tx(l - x) - t2) in [0, 1] x R+ , «(0) = 0 ,

with the exact solution w(x, r) = t2 x(l — x). For t > 0 this function belongs
to D(Aq) only for q < 5/4, so with p = 4, pö = 2 we may not expect 0(/c4)
convergence. In fact, with w = x(l — x) we have c3 ~ y~ 3 for 7 odd, and c7 — 0
for j even, and since Xj ~ j 2 a simple calculation along the above lines shows
II Pi \\

3. ERROR ESTIMATES IN TERMS OF DATA

Recall that the truncation error may be expressed in the form

i
1 = 0

where Rnp is defined by (2.1). For the purpose of estimating this in terms of the
data of the problem we use the differential équation (1.1) to write

Insert ing this int o (3.1) we have

1 = 0 l •

vol 16, n° 1, 1982



14 P. BRENNER et al

where

3 = 0 J *

and

Before presenting précise bounds for the remainder term in terms of data
we shall restate the accuracy conditions in terms of our newly introduced
coefficients. Setting

Tl(z) = z'"lYl(z) for / = 0,...,p,

we find easily from our définitions

£ T' «/z> for ' = °' •••» * ~ ! (3-3)

and

We conclude at once from (3 3) and Lemma 1 the following resuit.
LEMMA 2 : The scheme (1.2) is accurate oj order p ij and only ij

yi(z) = 0(z?-1) jor / = 0 , . . . , p , (3.4)

and birictïy accurate oj Order p0 ^ p ij and only ij

yi(z) = 0 jor l = 0, ..., p0 - 1 .

Note that for / = p the condition (3.4) may also be written

r{z) = e* + 0 { z p + 1 ) a s z ^ O . (3.5)

We have thus expressed the order of accuracy condition in the form stated in
(1.4) and (1.5) of the introduction.

As a préparation for a global error estimate we shall now show that under
our present assumptions,

ep(k^)w(p+1)(O)|| + sup

+ Ck' \ ||/p+1)(cf)|| da ds i (3.6)

k Jo j
R A 1 R O Analyse numérique/Numencal Analysis



INHOMOGENEOUS LINEAR DIFFERENTÏAL EQUATIONS 15

where

Note that in view of (3.5), 8p e M so that in (3.6),

|| || ^ C || uip+1)(0) || . (3.7)

and also that uip+1)(0) may be expressed in terms of data; for / ^ 0 we have
recursively u«+1)(0) = Auil\0) + / ° (0 ) , with u(0)(0) = t>.

For the purpose of showing (3.6) we write Rn p as a sum of

m ftn + tej (f

and

r _ AP

p !
ds ~

Since R,lp is obviously bounded as desired, it remains to consider R,fp. We shall
then use the fact that with vp+1 = u{p+1\0\

= E(t)vp+1 + ['E(t - s)J<>+1Ks)ds,

to write

p ï

where the term in vp+ x has resulted from the simple identity

p ! 0p(z) = f (1 - o)p e°z da - yp(z) =
Jo

(tH - sf é>-w ds -

It now follows by obvious estimâtes that R^p is bounded as stated.
We may now state the following result. Note again in the first estimate the

artüïcial assumptions j { l ) e D(Ap~l) for p0 < p.

vol. 16, n° 1, 1982



16 P. BRENNER et al

THEOREM 3 : Assume that the scheme is accurate of order p, and strictly accurate
oj order p0 ^ p, and let Ek be stable in X, Then under the appropriate regularity
assumptions,

I u(tn) - un II ^ œ i tn || BJLkA) iA+1>(0) H + tn X sup I X*"' /°(s) 1 +

+ (f« - s) IU(P+1)(5) N s L (3.8)
Jo J

r p0 = p — 1 and (2.6) holds we have

• (3.9)

Prooj : The first estimate follows in a straightforward manner from the
représentation (3.2) for the truncation error, the estimate (3.6) for the remainder
term, and the stability of Ek. In the latter case we have to estimate in addition,

Sn = kp+ * " f Erx ~j V ,{kA) A]*' x\tj).

Since now yp_ x(z) = — hp_ t(z) we have as in the proof of Theorem 2,

|| Sn || ^ Ckp J II ƒ " - ^ ( O ) II + II j{p\s) || ds l ,

which is bounded as desired.
Note again the inequality (3.7) bounding the first term on the right in (3.8)

and (3.9). In fact, the proof of these inequalities without Qp(kA) could be
derived by a somewhat easier argument. In their present form they will be
applied in Section 4.

4. TOTALLY DISCRETE SCHEMES

We shall briefly consider the application of our above results to the case when
discretization also takes place with regard to the space X as would be the case
when finite element approximations are used in the space variables. Thus let
Xh be a family of finite dimensional spaces approximating X, with norms || . \\h

R.A.I.R.O. Analyse numérique/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 17

and assume that we are given corresponding linear operators Ph ; X -> Xh

with

\\Phv\\h^C\\v\\ VveX,

where Ph v is thought of as an approximation of v. It could, for instance, be the
case that Xh is a subspace of X, that || . ||fc = || . ||, and that Ph is a projection
operator such that, with Y a dense subspace of X with norm || . ||y,

\\Phv-v\\ <Eh\\v\\y V u e Y , (4.1)

where eh is small with h. In applications to isoparametric finite éléments one
might have X - L2(Q) for some Q <= Rn and Xh = L2{Qh) where Qh is an
approximation to Q, in which case Ph v would approximate ü i n Q n Qh.

Assume also that we are given approximations Ah : Xh -> Xh of A which
generate uniformly bounded semigroups etAh on Xh. We may then consider
the semidiscrete problem to find uh : [0, oo) -> Xh such that

J£ = A h u h + PJ for t ^ O , uh(0) = Phv9 (4.2)

and pose the corresponding completely discrete problem by application of our
scheme(1.2), namely

«M+1 = Ekk uh9H + fc(Qw P J ) (O for n = 0 , 1 , . . . , (4.3)

where

m

Ekhvh = r(kAh)vh, (QkJh)(t)= |

Our purpose is now to show that under the appropriate regularity assump-
tions the combined error from both discretizations is 0(&h + /cp). In order to do
so we shall need an assumption concerning the choice of Ah which is satisfied
pi typical applications. We introducé the « elliptic projection » Qh : Y -• Xh by

which exists for v e D(A) since Ah générâtes a bounded semigroup. We also
assume that, cj. (4.1),

|| Qhv - Ph v \\h ̂  sJI v ||y Vu G D(A)n Y ,

vol. 16, n° 1, 1982



18 P. BRENNER et al

and that the exact solution of (1.1) belongs to Cx{Qy T ; y) for any T > 0.
Under these assumptions we shall prove an analogue of Theorem 2 ; a counter-
part of Theorem 1 can be similarly derived.

THEOREM 4 : Under the assumptions of Theorem 2 for the time discretization
scheme (1.2) and under the present assumptions on the discretization in X, we
have, ij Ekk is unijormly stable in X, that under the appropriate regularity assump-
tions

uhtn - Ph u{tn) \\h t„) sup Ij u(s) sup II u'{s)

(4.5)

Prooj : We find easily for the solution of the continuous problem

QH u'(t) - Ah Qh u(t) = jh{t) = Ph j(t) + (Qh - Ph) (u'(t) - u(t))

where

\\jh(t)-PHJ(t)L^2eh\\u'{t)-u(t)\\Y.

Considering the time discretized version of the équation satisfied by Qh u9

namely

fiM+i = E*h üh,n + KQkh L) (O for « = 0 ,1 , . . .

we have by Theorem 2,

2 M ~ QH Ck* j || Ah Qh

Hère

II A Qh u \\h =

and similarly

Qh it>+l\s) \\h) ds 1 .

Ah(I - AhT
l Ph(I -A)u\\h^C || (I-A)u\\,

\\Qhu\\h^C\\(I-A)u\\,

R.A.I.R.O. Analyse numérique/Numerical Analysis



INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 19

so that

II Kn - Q» u(tn) l ^ œ I il (/ - A) tf-vio) || +

+ f" (||(/ - , 4 ) 1 (̂5)11 + \\(I -A)u^+1\s)\\)ds\.

On the other hand, since r{kAh) is uniformly stable in Xh, we find

Il «M - «M lik ^

^ C I || Ph v - Qh v IL + k £ £ || ç/fcAJ (À(t, + fccj) - Ph J{tt + ki)) ||
[ 1 = 0 j=l

s= Ceh \ (1 + g sup || H(S) ! y + tn sup || u'{s) \ Y \ .
V. J

Together with the estimate

\\Qhu(tn)~ Phu(tn)\\h^Eh\\u(tn)\\Y,

this complètes the proof of the theorem.
Note that in the case that Xh c X, ||. ||h = ||. ||, and that (4.1) holds, Theo-

rem 4 immediately bounds || uhn — u(tn) \\ by the right hand side of (4.5).
As an alternative to the above treatment we shall now indicate an analysis

which uses the error estimâtes for the time discretization in terms of data,
given in Theorem 3, and which assumes given an error estimate for the semi-
discrète homogeneous équation rather than the one for the elliptic projection.

Thus let again { Xh } be a family of finite dimensional spaces approximating
X, let Ph : X -> Xh be uniformly bounded operators, and assume now that
Eh(t) is a given uniformly bounded family of semigroups on Xh which approxi-
mate E(t) in the sensé that, with Y a dense subspace of X,

\\Eh(t) Phv-Ph E(t) v \\h ̂  6h(l + yt) || v \\Y Vt; 6 Y . (4.6)

With Ah the generator of Eh(t) we consider as before the semidiscrete pro-
blem (4.2) and its completely discrete analogue (4.3). Under the assumptions
of Theorem 3 we shall now present an estimate for the error between the solu-
tions of thèse two problems. Combined with an error estimate for the semi-
discrete problem this would yield a complete error bound. We dénote by Ye

the interpolation space Ye = {X, Y)Qo0 between our basic space X and its
subspace Y.
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20 P. BRENNER et ai

THEOREM 5 : In the present situation assume that the time discretization scheme
is accurate oj order p, strictly accurate oj order p — 1, that (2.6) holds, and that
Ekh is unijormly stable in Xh. Then under the appropriate regularity assumptions

"„(O " « M II* < Ce* { (1 + O II « II* + M » IIr + tn ' l II / ( ° ( 0 ) I y,_ „ 1 +

+ Ckp |t„|u(p+1

f" l
+ II JiP 1 J ( 0 ) || + ( t , — S) I y ( p + 1 ) ( 5 ) \ \ d s } .

Jo J
Proo/ : Direct application of Theorem 3 gives

uh(tn) - wh,„ l ^ Ck" | tn || Qp(kAh) < + 1 ' ( 0 ) 1, +

+ f'\tm-s)lPkJ»+1\s)lds
Jo

|| J K ) l + t

where

1 = 0
» + t .̂r'

Since Pft is bounded, the terms containing j are bounded as stated. In order to
estimate the first term on the right it suffices by (3.7) to bound

S = k» { Qp(kAh) u<"+1»(0) - Ph QJLkA) M(P+1>(0) } ,

or, with Qj{z) = zj Qp(z),

S = §p(kAk)AhPhv-Ph§p(kA)Av+ t k%-tkAJPh-Ph8p_tkA))Jm(0)
1 = 0

p
_ c _i_ V e

— ^ p + l "T" 2-u ̂ l '

In order to deal with the different terms in S we shall need the following lemma.

LEMMA 3 : Ij (4.6) holds and g, g' e M we have

1 g(kAh) Phv-Ph g(kA) v \\h ^ eh(m(9) +
R.A.I.R.O. Analyse numérique/Numerical Analysis
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Prooj : We have

= f ef'dtit) wi th f d\ix\(t)=
JR+ JR+

f(z) = f e"
JR +

ƒ
*J R +

g(z) = \ e1 d^{i) with | d \ \i \ (t) = m(g),

and

so that

td\\x\(t) =

Now

flf(JUfc) Phv - Ph g(kA) v = {Eh(kt) Ph - Ph E(kt)) v d\i{t),

and hence

|| g(kAh) Phv~ Ph g(kA) v \\h ^ e„ f (1 + ykt)d\ \i | (r) || Ü ||r
JR +

^zh(m(g) + ykm(g'))\\v\\Y.

Note that since g{kAh), Ph, and ö'(fê ) are bounded we have by interpolation,
for k bounded,

|| g(kAh) Phv-Ph g(kA) v \\h ̂  Ce» \\v\\Ye for 0 ^ 0 ^ 1 . ( 4 . 7 )

Note also that as a resuit of the lemma we have for the elliptic projection defined
in (4.4),

I Qkv-Phv\\h= || ( ( / - ^ r 1 Ph-Ph(I-A)~1)(I-A)v\\h^ CsJI (I-A)v\\Y.

We may now complete the proof of Theorem 5 by estimating the Sï5

/ = 0,...,/? + 1. Since Qb Q[ e M we have by Lemma 3 and (4.7) for / = 0,...,/?,

II ^ i l u ^ ^K ^h || 7 \ y ) \ \ Y i - t f p ^ ^ ^ 'T" % ) II J v ^ J I k i - i / p *

In order to bound Sp+1 we first note that we may replace Ph v by discrete
initial values vh = Qh v. For the différence in the solution between vh = Qhv
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and vh = Ph v may be bounded as follows,

\\EUQH-PH)v\\h^Ceh(\\Av\\Y+ \\v\\Y).

With vh — Qh v we have by a simple calculation

Sp+, = §p(kAh) AhQhv- Pn §p(kA) Av

= (%(kAk) Ph - P, $p(kA)) Av + Qp{kAh) (Ö„ ~Ph)v,

and hence

II S p + i \ \ h ^ C e h ( \ \ A v \ \ Y + \ \ v \ \ Y ) .

The proof of the theorem is now complete.

5. CONSTRUCTION OF ACCURATE SCHEMES

Recall from Section 1 that the scheme (1.2) is of order p if and only if

r(z) - e2 = 0{zp+1) as z - • 0 (i)

and

) - t -)- I ^ / ^ r 1 ) as 2 - 0 , (ii)
j ! /z \ Jo j / j i

for / = 0 , . . . , p - l ,

and is strictly accurate of order p0 ^ p if in addition

Y,(2) = 0 for / = 0 , . . . , p 0 - 1-

For the case that the number m of quadrature points is less than p we shall
now give an alternative characterization of a scheme of order p which will be
used to construct accurate schemes below.

LEMMA 4 : Let m < p. Then the scheme (1.2) is accurate oj order p ij and
only ij (i) holds together with

yt(z) = 0{zp~l) as z - 0 jor 1 = 0,..., m - 1 , (ii)'

and with co(t) = UJ=1(t - x)9

i

co(O tj dt = 0 > r j = 0,..., p - m - 1 . (iii)
)
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Prooj : Let us first note that (iii) is equivalent to the existence of bl9..., bm

such that, with Tïp_ : all polynomials of degree at most p — 1,

= I fo.cpd; V c p e l V i . (iü)'

To show the necessity of the conditions it thus suffices to show (iii)' for <p = t\
l = 0,..., p - 1. But by (i) and (ii),

^ ° ) = Tin ~ t XUJW = °> ' = O—P - i,

so that with bj — qfö),

We now turn to the sufficiency of the conditions and it suffices then to show
that

y,(z) = 0{zp~l) as z -> 0 for 1 = m,..., p - 1 . (5.1)

We have by intégration by parts and by (i),

z i+i f1 I 2 ; I ZJ
-rj - e*1"0 t' A = e2 - X -n = r(z) - Z "n + 0(zp+1) as z -> 0

' • Jo j=o J • J=O J -

and hence

Yl(z) = ^d- ' ) t1 A - £ xj ^(Z) + 0(zp~l) as z -> 0 .
Jo J=°

m

For ©(t) as above we write ©(t) = £ a, t1. Then since ©(T,) = 0 we obtain by

expanding the integrand and using (ii)', for i = 0, ...,p — m — 1,

t *i W z ) = [ gI(1'° f' ®(f) A + O(z^---0 = 0(zp-m~l) as z -, 0 .

Since am = 1 we conclude (5.1) by induction over /.
The above lemma provides a method for constructing a scheme which is

accurate of order p, and stnctly accurate of order m, if m > /?/2 : We first choose
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24 P. BRENNER et ai

r(z) so that (i) holds, then select the distinct numbers { x,}? c [0, 1] so that (iii)
is satisfied and finally détermine the rational fonctions { q^z) }7 so that y£z) = 0
for / = 0, ...,ra — 1 or

4 U) - I -) for / = 0,..., m - 1 . (ii)"

Note that the matrix of this System is nonsingular since the x} are distinct, and
that the q3{z) will have the same denominators as r{z\ which is advantageous
for the implementation of the scheme. Note also that the condition p ^ 2 m
is necessary for the existence of { x,}? so that (iii) holds ; if p = 2 m the points
are uniquely determined as the Gaussian points of order m on [0, 1].

It is now natural to ask if the conditions (i), (ii)" and (iii) (or (iii)') in fact
imply strict accuracy of order higher than m. In this regard we have the fol-
lowing :

LEMMA 5 : Assume that the scheme (1.2) is accurate oj order p and strictly
accurate oj order m < p xvhere m is the number oj quadrature points. Then it is
strictly accurate oj order m -f 1 ij and only ij with (ù(t) = II™=1(t — xy),

f ] zm"J

2

The scheme cannot he strictly accurate oj order m + 2 ^ p.

m

Prooj : Recaiiing the définition of yt{z) and co(t) = £ a, r we have since

m m i : \

1 I «, i ! z--' K*) - I I a, j j
1 = 0 ( i = O 1 = 0 j=0 J '

zm-cû"»(o)- f;z"-'©«'>(i)l,
i = 0 J

which shows that ym(z) = 0 if and only if (5.2) holds.
Similarly, if the scheme is strictly accurate of order m + 1 < p we have with
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and strict accuracy of order m + 2 would imply that in addition to (5.2),

£ zm- |© ( l+1)(0)

Since oê>(m+1)(O) = (m + 1) ! = (m 4- 1) œ(m)(0) a comparison between (5.2) and
(5.3) shows that we must have ö(l+1)(0) = (m + l)cö(o(O) for i = 0, ...,ro.
Since Ü)'(O) = co(0) this is impossible if co(0) # 0. But if œ(0) = 0 we have since
the Xj are distinct that ©'(0) ^ 0 and since ©"(0) = 2 ©'(0) we now conclude
m = 1. In this case ©(f) = r and (5.2) and (5.3) both yield r(z) = 1 + z which
is not permissible.

For the case p — 2 m the function r(z) defined by (5.2) is the diagonal Padé
approximant rmm{z) of ez since this is then uniquely determined by (i). The
particular case m = 1 corresponds to the Crank-Nicolson scheme

+ \kÀ\un + kj(tn +^

For m = 2 we have

which is accurate of order 4, and strictly accurate of order 3. It is easy to check
that (2.6) holds so that the error estimate of Theorem 2 applies.

One way of generating schemes of type (1.2) is to use implicit Runge-Kutta
methods (cj. [2]). If the method is of collocation type, condition (5.2) is satisfied
and YJ(Z) — 0 for / = 0,..., m — 1. An interesting class of such schemes is given
by N0rsett [3] ; these schemes satisfy the relation (5.2) and the rational functions
r and q3 have exactly one pole, which is the same for all these functions. For
related material, see also N0rsett and Wanner [4].
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