Iterative refinement of finite element approximations for elliptic problems
RAIRO. Analyse numérique, Tome 16 (1982) no. 1, pp. 39-47.
@article{M2AN_1982__16_1_39_0,
     author = {Qun, Lin},
     title = {Iterative refinement of finite element approximations for elliptic problems},
     journal = {RAIRO. Analyse num\'erique},
     pages = {39--47},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {16},
     number = {1},
     year = {1982},
     mrnumber = {648744},
     zbl = {0481.65064},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1982__16_1_39_0/}
}
TY  - JOUR
AU  - Qun, Lin
TI  - Iterative refinement of finite element approximations for elliptic problems
JO  - RAIRO. Analyse numérique
PY  - 1982
SP  - 39
EP  - 47
VL  - 16
IS  - 1
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1982__16_1_39_0/
LA  - en
ID  - M2AN_1982__16_1_39_0
ER  - 
%0 Journal Article
%A Qun, Lin
%T Iterative refinement of finite element approximations for elliptic problems
%J RAIRO. Analyse numérique
%D 1982
%P 39-47
%V 16
%N 1
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1982__16_1_39_0/
%G en
%F M2AN_1982__16_1_39_0
Qun, Lin. Iterative refinement of finite element approximations for elliptic problems. RAIRO. Analyse numérique, Tome 16 (1982) no. 1, pp. 39-47. http://www.numdam.org/item/M2AN_1982__16_1_39_0/

F. Chatelin, Linear spectral approximation in Banach spaces (to appear).

P. G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order.Springer-Verlag, Berlin-Heidelberg-New York (1977). | MR | Zbl

W. Hackbusch, Bemerkungen zur iterierten Defektkorrektur. (To appear in Rev.Roumaine Math. Pure Appl.) (1981). | MR

Lin Qun, Some problems about the approximate solution for operator equations. Acta Math. Sinica 22 (1979) 219-230. | MR | Zbl

Lin Qun, Method to increase the accuracy of Lowe-degree finite element solutions... Computing Methods in Applied Sciences and Engineering, North-Holland, Amsterdam (1980). | MR | Zbl

J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer.Math. 11 (1968) 346-348. | EuDML | MR | Zbl

A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962. | MR | Zbl

I. H. Sloan, Improvement by iteration for compact operator equations. Math. Comp. 30(1976) 758-764. | MR | Zbl

H. Stetter, The defect correction principle and discretization methods. Numer. Math.29 (1978) 425-443. | MR | Zbl

G. Strang and G Fix, Analysis of the finite element method. Prentice-Hall, EnglewoodCliffs,N. J. (1973). | MR | Zbl