L -error estimates for variational inequalities with Hölder continuous obstacle
RAIRO. Analyse numérique, Tome 16 (1982) no. 1, pp. 27-37.
@article{M2AN_1982__16_1_27_0,
     author = {Finzi Vita, Stefano},
     title = {$L_\infty $-error estimates for variational inequalities with {H\"older} continuous obstacle},
     journal = {RAIRO. Analyse num\'erique},
     pages = {27--37},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {16},
     number = {1},
     year = {1982},
     mrnumber = {648743},
     zbl = {0493.49011},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1982__16_1_27_0/}
}
TY  - JOUR
AU  - Finzi Vita, Stefano
TI  - $L_\infty $-error estimates for variational inequalities with Hölder continuous obstacle
JO  - RAIRO. Analyse numérique
PY  - 1982
SP  - 27
EP  - 37
VL  - 16
IS  - 1
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1982__16_1_27_0/
LA  - en
ID  - M2AN_1982__16_1_27_0
ER  - 
%0 Journal Article
%A Finzi Vita, Stefano
%T $L_\infty $-error estimates for variational inequalities with Hölder continuous obstacle
%J RAIRO. Analyse numérique
%D 1982
%P 27-37
%V 16
%N 1
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1982__16_1_27_0/
%G en
%F M2AN_1982__16_1_27_0
Finzi Vita, Stefano. $L_\infty $-error estimates for variational inequalities with Hölder continuous obstacle. RAIRO. Analyse numérique, Tome 16 (1982) no. 1, pp. 27-37. http://www.numdam.org/item/M2AN_1982__16_1_27_0/

1. C Baiocchi, Estimation d’erreur dans L pour les inéquations à obstacle, Proc.Conf. on « Mathemetical Aspects of Finite Element Method » (Rome, 1975), Lecture Notes in Math., 606 (1977), pp. 27-34. | MR | Zbl

2. C. Baiocchi and G. A. Pozzi, Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality, R.A.LR.O., Analyse Numér., 11 (1977), pp. 315-340. | Numdam | MR | Zbl

3. A. Bensoussan and J. L. Lions, C. R. Acad. Sci Paris, A-276 (1973), pp. 1411-1415, 1189-1192, 1333-1338 ; A-278 (1974), pp. 675-679, 747-751. | Zbl

4. M. Biroli, A De Giorgi-Nash-Moser result for a variational inequality, Boll U.M.I, 16-A (1979), pp. 598-605. | MR | Zbl

5. H. Brezis, Problèmes unilatéraux, J. Math, pures et appl, 51 (1972), pp. 1-168. | MR | Zbl

6. F. Brezzi, W. W. Hager and P. A. Raviart , Error estimates for the finite element solution of variational inequalities (Part I), Numer. Math., 28 (1977), pp. 431-443. | MR | Zbl

7. L. A. Caffarelli and D. Kinderlehrer, Potential methods in variational inequalities, J. Anal Math., 37 (1980), pp. 285-295. | MR | Zbl

8. M. Chipot, Sur la régularité lipscitzienne de la solution d'inéquations elliptiques, J. Math, pures et appl., 57 (1978), pp. 69-76. | MR | Zbl

9. P. G. Ciarlet, The finite element method for elliptic problems, North Holland Ed.Amsterdam (1978). | MR | Zbl

10. P. G. Ciarlet and P. A. Raviart, Maximum principle and uniform convergence for thefinite element method, Comput. Methods Appl. Mech. Engrg., 2 (1973), pp.17-31. | MR | Zbl

11. P. Cortey Dumont, Approximation numérique d'une inéquation quasi-variationnelle liée à problème de gestion de stock, R.A I.R.O., Analyse Numér., 14 (1980),pp. 335-346. | Numdam | MR | Zbl

12. J. Frehse, On the smoothness of variational inequalities with obstacle, Proc. Semester on P.D.E., Banach Center, Warszawa (1978).

13. J. Frehse and U. Mosco, Variational inequalities with one-sided irregular obstacles, Manuscripta Math., 28 (1979), pp. 219-233. | MR | Zbl

14. H. Lewy and G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), pp. 153-188. | MR | Zbl

15. E. Loinger, A finite element approach to a quasi-variational inequality, Calcolo,17 (1980), pp. 197-209. | MR | Zbl

16.U. Mosco, Implicit variational problems and quasi-variational inequalities, Proc.Summer School on « Nonlinear Operators and the Calculus of Variations » (Bruxelles, 1975), Lecture Notes in Math., 543 (1976), pp. 83-156. | MR | Zbl

17. J. Nitsche, L -convergence of finite element approximation, Proc. Conf. on « Mathematical Aspects of Finite Element Methods» (Rome, 1975), Lecture Notes in Math.,606 (1977), pp. 261-274. | MR | Zbl

18. A. H. Schatz and L. B. Wahlbin, On the quasi-optimality in L of the H 0 1 -projection into finite element spaces, to appear. | Zbl