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R A I R O Analyse numenque/Numerical Analysis
(vol 15, n°3, 1981, p 237 a 248)

ON KORN'S SECOND INEQUALITY (*)

by J. A. NITSCHE C1)

Resumé — On donne trois démonstrations élémentaires de la seconde inéquation de Korn, selon
Vune des hypotheses situantes lajiontieie du domaine est (1) continûment deuvable, (2) un polygone
en dimension 2, (3) Lipschitzienne bornée

Abstract — Three eiementary proofs are given for Korrfs second inequahty according to the
assumptions The boundary of the domain is (1) continuously differentiatie, (2) a polygon in two
dimensions, (3) Lipschitz bounded

0. NOTATIONS AND INTRODUCTION

In this paper we use the notations standard in the theory of elliptic équations.
In addition by a dot on top of a letter denoting a fonction space the (not closed)
subspace of fonctions vanishing outside some sphère is meant, e.g. H^ — H^Q)
consists of ail u e Hx such that there is a sphère with finite radius which
contains the support of w. Of course this is only relevant for unbounded domains.
Differentiation is indicated by M)( := du/dxt. We will also consider vector-
valued fonctions in which case we write u = (uu ...,uN) with N being the
dimension. Then ue Hk means ux e Hk for i = 1, 2,..., N and

(M, v)k = (ul9 vX (1)

(the summation convention is used throughout the paper).
We will also use the abbreviations

(ii ( | fc,üf |k) (2)

and
|| Vu || =(Vu,Vu)1 / 2 . (3)

(*) Reçu le 18 avril 1980
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238 J. A. NITSCHE

In linear elasticity associated with the displacement vector u are the strain-
and stress-tensors defined by

1
2 Ui^k W*"< (4 )

with À,, ̂  being the Lamé constants and Sifc the Kronecker symbol. The elastic
energy corresponding to the displacement u is given by

a(u, U) = (£jfc(w), O"ifc(M))

=11
Within the frame work of Hilbert-space-theory the coerciveness of the

bilinear form a(., .) in the space H^ is essential. This means : Is there a constant
c1 independent of u such that

II M | 1 î < C l {<<£«)+ || M ||2} (6)

holds for all u e H^ For more details we refer to Fichera [1972].
Because of the conditions X ^ 0, [i > 0 it is sufficient to have the inequality

I! Vu ü2 ^ c2 { I! e(u) |!2 + || u ||2 } := c2 {(eik(ul ^M) + (uh ud } . (7)

o

Korn's first inequality states the validity of (7) for u e Hx even without the
second term on the right hand side. The proof is quite simple leading to the
explicite bound c2 = 2, see Friedrichs [1947] or Velte [1976], p. 67.

In the literature the proof in the genera! case, i.e. Korn's second inequality,
is referred to " anything but trival ", see Fichera [1972], p. 382 or Ciarlet [1977],
p. 24. The original proof of Korn [1909] is doubtful. In the meantime proofs
are given by Duvaut-Lions [1972], p. 110, Fichera [1972], Friedrichs [1947],
and Paine-Weinberger [1961]. Besides the different assumptions concerning
the boundary, for instance only the proof of Fichera covers domains with
corners, all these proofs are quite sophisticated. In order even to understand
them a profound knowledge of the theory of partial differential équations is
necessary.

The aim of this paper are three elementary proofs under different assump-
tions. In section 1 we treat the case of a domain with C ̂ boundary. The special
case of a polygonal domain in two dimensions is handled in section 2. This
could be generalized to domains with piecewise smooth boundaries in arbi-
trary many dimensions but omitted here. The gênerai case of bounded Lip-

R.A.I.R.O. Analyse numérique/Numerical Analysis



ON KORN'S SECOND INEQUALITY 239

schitz-domains is discussed in section 3. The main tooi is the construction of
extension operators E : Ht(Q) -> Jï^R*) which are strain-preserving, i.e. such
that an inequality of the type

| | s ( £ w ) | | R N < c 3 { | | 8 ( M ) | | n + || M ||n } (8)

holds true. The extensions are appropriate modifications of those typical in
the elliptic theory, see Fichera [1965], p. 52 and Stein [1970], p. 180.

1. THE CASE OF SMOOTH DOMAINS

In this section we prove the validity of Korn's inequality for domains with
C^-boundaries in the following way : Firstly we construct a strain-energy
preserving extension operator from the upper half-space to the whole space.
In this way a simple proof is given for the half-space. Secondly we generalize
this result to special C ^domains and thirdly we turn over to the gênerai case.

LEMMA 1 : To any u defined in R+ there is a reflection u defined in R* such
that the extension operator E defined by

u in R +

üinUN' ( 9 )

fulfills.

PROPOSITION 1.1 : E maps C°(ÜN
+) into C°(UN).

. o

PROPOSITION 1.2 : E maps H^R*) into H1(R
JV) such that in addition

holds true.

Remark 1 : The constant c4 is independent of the radius of the sphère
outside of which u vanishes.

Remark 2 : Because of Korn's first inequality we get

| | V M | | R ? < | | V ( E U ) | U N

^ 2 f £(£w) || RN

^ 2c II S(M) II N . (11)

This implies Korn's second inequality in the space H1(R+).

vol. 15, n° 3, 1981



240 J. A. NITSCHE

Proof of lemma 1 : We will use the splitting x = (£, Ç') with £, = (xl9..., xN_ x)
and Ç' = Xjy. Further let a, P dénote indices within the range (1, ..., N — 1).
Now we put

üa = pu\ + «u£,

Here p, <?, r, s and X,, ja — the last in no context with the Lamé constants —
are parameters to be fïxed later and the upper indices X, \i dénote for any
function v

„3,
iH* = vg, - tg).

The conditions

X>0, \x> 0 (14)

guarantee that wf is well defined for xeUN„. Proposition 1.1 holds in case of

P + <? = 1 ,
/ (15)

r + s = 1.
Then, of course, the first assertion of proposition 1.2 is also valid.
Obviously we have

(17)

Thus only the pairs (oc, N) remain to be considered. We get

- (18)

The choice

r = - Xp, s = - M4 (19)

leads to

eaJv© = ^iv(w)X + 58 a i V ^ . (20)

For X # |i the parameters p, ̂ f, r, s are uniquely defined. A possible choice is
X = 2, n = 1, p = — 2, 4 = 3, r = 4, s = — 3. Having fixed the parameters
we come from (16), (17) and (20) to (10) with some constant c4.
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ON KORN'S SECOND INEQUALITY 241

Next we extend lemma 1 to C ̂ domains of the following type. Let ƒ (£) be a
given C^function in N — 1 variables with the scaling

/ 0 . (21)

Then we consider the domain

Q + = { x | x = £,!;') A ^ ' > ƒ(£)} (22)

and in addition

Q* = Q + n ÜC„(O) (23)
with

KR(0) = { x | | x | < R } . (24)

We will use notations like u e Hf(Q+) if u is in Hi(£2+) and vanishes outside

n*.
LEMMA 2 : Tfere exists an extension operator E whichfulfills.

PROPOSITION 2.1 : E maps Ç°(Q+) into Ç°(UN).

PROPOSITION 2.2 : E maps Hf(Q+) into Jï^R*) such that in addition

|| £(Eu) II WH ^ c5 II e(«) ||n+ + c6 K II Vu ||n+ (25)

/îolds trwe witlî two numerical constants c5, c6 and K defined by

K = s u p { | / j a £ ) | | a = 1 JV - 1 A U I < R } . (26)

Remark 3 : Similar to remark 2 we get now

II Vu ||Q+ < 2 c5 || e(M) ||n+ + 2 c6 K || Vu | |n+ . (27)

Thus for K < 1/(2 c6) we get Korn's second inequality in the space H f (O+).
Proof of lemma 2 : We use the définition of ü (12) but now with the meaning

In the relations (16), (17), (20) correction terms enter now, we have e.g.

4 | 4 Si* } • (29)
vol. 15, n«3, 1981



242 J. A. NITSCHE

Since these additional terms are bounded in norm by CK || VU ||n+ the lemma
is proven.

In the last step now let Q be a bounded domain with boundary
5Q continuously differentiable. We may cover 3Q by a set of sphères Kv with
centers on ôQ such that Qv = Q n Kv coïncides after a translation and rotation
with a domain of the above type and such that the corresponding KV are less
than 1/(2 c6). Further we choose a domain Qo c c O such that Qo and the Qv

are a covering of Q. Let cpv be a partition of unity with respect to
the Qy, i.e. cpv e C00, supp (cpv) e Qv and Scpv = 1. We introducé the splitting

u — Zwv with wv = cpv M . (30)

Applying Korn's first inequality to u° and lemma 2 to MV for v ^ 1 we come to

II V u v || ^ c 7 || E(HV ) II (31)

with a numerical constant c7. Because of

e (wv) = E (u) + -(u +u ) (32)

we get

II e(t£v) || < c8 { || e(u) || + || « II } (33)

with c8 depending on the covering and henceforth on ôQ and iV.
Because of (30), (31) and (33) we have proved the validity of (7) resp. Korn's

second inequality in the case of a smooth domain.

2. THE CASE OF POLYGONAL DOMAINS

For simplicity we restrict ourselves to N — 2 dimensions in this section.
Now the variable will be denoted by (x, y) and the displacement-vector by («, v).
The proof of Korn's second inequality will follow the lines of Section 1 but in
the present case with the omission of the second step. The counterpart of
lemma 1 is

LEMMA 3 : Let (M, V) be defined in the angular domain

Q+ = {(x,y)\x>0 A y>yx}. (34)

There is a reflection (ff, v) defined in

Q_ = { (x, y) | x > 0 A y < yx } (35)

R.A.I.R.O. Analyse numérique/Numerical Analysis



ON KORN'S SECOND INEQUALITY 243

such that the extension operator E defined by

(M, V) in fi+

j ' n , (36)
(y, V) m O_

PROPOSITION 3.1 ; £ maps C°(Q+) in

R? = {(x, y) I x > 0 } . (37)

PROPOSITION 3.2 : £ maps H1{Q+) into HX(U^) such that

î ;))!U^c9 | !8(u s i ;) i | a + . (38)

Remark 4 : Let {u, v) e Hi(O+) be given. Then £(u, v) is defined in R? and
belongs to H^IR^). The extension £ of lemma 1 applied to £(u, v) leads to
(S, iï) = E o £(M, Ü) e jyiR 2) . We get

^ 2 c4c9 1 £(«,!>) | | o + - (39)

This implies Korn's second inequality in the space 1^(

Proof of lemma 3 : Similar to the proof of lemma 1 we will use a refleetion
parallel to the y-axis. Corresponding to (12) we need two additional terms.
For (x, ji)€Û_ we put

ü = pu1 + 0wM + pvx + <TI^ .
(40)

ff = nr + s#.

In the present case the upper index X (and similar |i) indicates for a function w

— y ) ) . (41)

Proposition 3.1 and the first assertion of proposition 3.2 is met if the
conditions

p + 3 = l 5 r + s = = i } p + a = o (42)

hold true.

vol. 15, n° 3, 1981



244 J. A. NITSCHE

Since the définition of v resp. uN is unaltered formula (17) is valid. But now sx x

as well as e12 are to be considérée!. We get

eiifö v) = P(ux + 7(1 + X) uyf + q(ux + y(l + ^) <T +

+ p(px + Y(1 + X) vyf + a{vx + 7(1 + n) Ü / . (43)

Our aim is to choose the parameters such that the right hand side is a linear
combination of £ik(u, u)x**\ The conditions are

p = py(l + X), a = gy(l + n). (44)

Then we have

eii(i^ ö) - p£xn + gsïi + 2 pe\2 + 2 aeï2 +

+ PY(1 + k) s\2 + ay(l + ji) 8^2 . (45)

In the same way we get

2 e12(u, Ü) = - Mpuy + pi?/ - \i{quy + aï;y)^ +

+ >K + 7(1 + X) vyf + s(Ux + 7(1 + [i) » / • (46)

If the conditions (19) are fulfilled we get

2 £12(i/5 v) - 2 rsx
12 + 2 S8Ï2 + (ry(l + X) - Xp) e\2 +

+ (sy(l + n) - H 8^2 . (47)

Concerning the conditions on p, g, r, s they are the same as in section 1. Let p, a
be defïned by (44). Then (42.3) is valid automatically.

Since zik(ü, v) are linear combinations of sik(u, vf"^ we get

II e ( u , ö ) | | n _ ^ c\\e(u,v)\\Q+ (48)

what complètes the proof of lemma 3.
The remaining step in order to prove Korn's inequality is similar to above.

Let Q be a polygonal domain. We use a covering of dQ, be circles Kv with
centres on <3Q such that Q n Kv is either a half-circle or an angular domain
intersected with a circle. Then by means of a partition of unity and the split-
ting (30) we apply Korn's first inequality, lemma 1 and lemma 3.

3. THE CASE OF LIPSCHTTZ DOMAINS

In analogy to section 1 let ƒ(£) be now a Lipschitz-function in N — 1 variables
and let the " special Lipschitz domain " Q+ be defïned by

Q+ = { x | x = feÇ') A ? > ƒ £ ) } . (49)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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The complement [RN-Q+ is denoted by Q_. The counterpart of lemma 1 is :

LEMMA 4 : To any u defined in Q+ there is a reflection fif defined inQ„ such
that the corresponding extension operator Efuljïlls.

PROPOSITION 4.1 : E maps C°(Q+) into C°(UN).

PROPOSITION 4.2 : E maps HX(Q+) into J&^R*) such that in addition

| | | | | | | | n + (50)

holds true with c10 depending on the dimension N and the Lipschitz-constant M
of the function ƒ

Remark 5 : In analogy to remarks 2-4 then we have Korn's second inequality
in thespaceH1(Q+).

Proof of lemma 4 : In order to construct the reflection we need the concept
of the generalized distance. For x e Q_ let d(x) dénote the distance to Q + , Le.

d(x) = i n î { \ x - y \ I y e Q + } . (51)

By elementary geometrical considérations we get

0 < (1 + M2)-1'2 (ƒ© - %') ̂  d(x) <M) - É'. (52)

As long as ƒ is only Lipschitz-bounded the distance has no higher regularity.
It can be increased by an appropriate smoothing process. We will not go into
details but refer to Stein [1970], p. 171 :

There is a C œ-function 8(x) defined in Q_ such that

0 < 2(/fê) - Ç0 ^ 5(x) ^ c n ( / © - ÉO. (53)

Moreover, there are bounds for the derivatives of the type

\Daè(x)\ ^ c f l a D S M 1 - " " . (54)

Remark 6 : The choice of the factor 2 in (53) is advantageous here.

Remark 1 : Actually we need only the first and second derivatives of S and (54)
for | a | < 2.

The reflection we will work with is

-r - X §\i(x) uN(xx) } dk . (55)

vol. 15, n° 3, 1981



246 J. A. NITSCHE

Here \(/(X) is a weight-function and

) . (56)

Because of (53) for x e Q_ the points xx are in O+ for X > 1, i.e. u is defined.
There is some ambiguity in the choice of \|/. In our case the conditions

\|f eC° [ l , 2]and

f y\f(X) dX = 15 f Xi|/(X) dX = 0 (57)

are sufficient
Obviously u e C°(Q_) is a conséquence of u e C°(Q+). Now let xv = (£, ^ ) ,

^v < /fë) converge to 5c = (^,/(^)). Because of the choice of \|/ we get with
x € Û _ arbitrary

ut(x) + ^„(x) %(x) } <& . (58)

By comparison with (55) we find for u continuous in Q+ at once ü(xv) -» M(X),
Le. proposition 4.1 and the first assertion of proposition 4.2 are shown.

By direct computation we get from (55)

f2 x

Ji ** ) £lfe+ !I£AX) { 4 + X 8U s ^ + X 8|Jk sîiv +

+ X 2 ô | l 5 [ k e ^ + X 5 | l f c M U ^ (59)

with 8̂ fe = £tk{tt(xô)' O n the right hand side all terms except the last one are
bounded by (numerical) multiples of intégrais of the type

ë(x) = f | 4x0 I dX (60)

with e being one of the strain components elk(u).
In the last term wN mstead of e enters on the one hand and 5jlfc will not be

bounded on the other hand. But still we can find a bound of the above type.
Taylor's formula gives

uN(xx) = %(xx) + Ô % | iV(^) d\x (61)
Ji

R AIR O Analyse numénque/Numencal Analysis
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leading because of (572) to

*2

f
r2 r2

= S(x) 5|it(x) £AWCX:M) dp. À.\(f(̂ ) dÀ.. (62)
Ji Jn

The proof of lemma 4 is complete if the L2(Q_)-norm of ë is bounded up to
a constant by the L2(Q+)-norm oîe. The main part will be the intégration with
respect to the last variable. Let £, be fixed. We will use a translation such that
/(^) = 0. Then omitting the dependence on £ we have for x = m ' ) e f l _ ,
ie. £' < 0

| e(^ + X Sfë')) dX = 5 1(£)
f) I e(s) | ds . (63)

We fïnd with the aid of (53)

S"1^') < 2 I ̂ ' I ' 1 ' ^' + ^ ' ) ^ I ̂ ' t 5' + 2 Sfë') < 2 c n | 4' | . (64)

Therefore we get from (63) with i = - ç , c = 2 c n

i f* ,

2ë{- t) ^ r 1 |e(s) |ds . (65)

Schwarz' inequality with | e \ = s1/4 { s~1/4 | e | } gives

4 ^ 2 ( - t) < | c3/2 t"1 /2 f s"1 /2 e2(s) ds . (66)

Intégration from 0 to oo and the interchange of the order of intégration lead to
/»0 /»OO /»S /»0O

è2(^) d^' ^ c12 s-1/2 e2(s) ds t"1/2 dt ^ 2 c12 e2(s) ds . (67)
J-oo Jö Jc~ls Jo

Without the mentioned translation the limits 0 in the intégrais are to be replaced
by ƒ (£). Now we integrate with respect to C over R*"x getting

ll^llL2(n_)^^3ll^llL2(a+)* (68)

In this way lemma 4 is proved.
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248 J. A. NITSCHE

In order to get Korn's second inequality for gênerai Lipschitz domains the
arguments at the end of section 1 have to be applied We will not repeat them
hère once more.
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