@article{M2AN_1981__15_3_231_0, author = {Helfrich, Hans-Peter}, title = {Simultaneous approximation in negative norms of arbitrary order}, journal = {RAIRO. Analyse num\'erique}, pages = {231--235}, publisher = {Centrale des revues, Dunod-Gauthier-Villars}, address = {Montreuil}, volume = {15}, number = {3}, year = {1981}, mrnumber = {631677}, zbl = {0495.41010}, language = {en}, url = {http://www.numdam.org/item/M2AN_1981__15_3_231_0/} }
TY - JOUR AU - Helfrich, Hans-Peter TI - Simultaneous approximation in negative norms of arbitrary order JO - RAIRO. Analyse numérique PY - 1981 SP - 231 EP - 235 VL - 15 IS - 3 PB - Centrale des revues, Dunod-Gauthier-Villars PP - Montreuil UR - http://www.numdam.org/item/M2AN_1981__15_3_231_0/ LA - en ID - M2AN_1981__15_3_231_0 ER -
%0 Journal Article %A Helfrich, Hans-Peter %T Simultaneous approximation in negative norms of arbitrary order %J RAIRO. Analyse numérique %D 1981 %P 231-235 %V 15 %N 3 %I Centrale des revues, Dunod-Gauthier-Villars %C Montreuil %U http://www.numdam.org/item/M2AN_1981__15_3_231_0/ %G en %F M2AN_1981__15_3_231_0
Helfrich, Hans-Peter. Simultaneous approximation in negative norms of arbitrary order. RAIRO. Analyse numérique, Tome 15 (1981) no. 3, pp. 231-235. http://www.numdam.org/item/M2AN_1981__15_3_231_0/
[1] Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Part I. (Ed. A. K. Aziz) Academic Press, New York, London, 1972. | MR | Zbl
and ,[2] Least squares methods for 2 m th order elliptic boundary-value problems, Math. Comp., 25 (1971), 1-32. | MR | Zbl
and ,[3] Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Analysis, 14 (1977), 218-241. | MR | Zbl
, , and ,[4] Simultaneous approximation in scales of Banach spaces, Math. Comp. 32 (1978), 947-954. | MR | Zbl
and ,[5] Linear Differential Equations in Banach space, American Math. Soc., Providence, 1971. | MR | Zbl
,[6] Nonhomogeneous Boundary Value Problems and Applications, Vol. I, Springer Verlag, Berlin and New York, 1972. | Zbl
and ,