A hybrid finite element method to compute the free vibration frequencies of a clamped plate
RAIRO. Analyse numérique, Tome 15 (1981) no. 2, pp. 101-118.
@article{M2AN_1981__15_2_101_0,
     author = {Canuto, Claudio},
     title = {A hybrid finite element method to compute the free vibration frequencies of a clamped plate},
     journal = {RAIRO. Analyse num\'erique},
     pages = {101--118},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {15},
     number = {2},
     year = {1981},
     mrnumber = {618818},
     zbl = {0462.73049},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1981__15_2_101_0/}
}
TY  - JOUR
AU  - Canuto, Claudio
TI  - A hybrid finite element method to compute the free vibration frequencies of a clamped plate
JO  - RAIRO. Analyse numérique
PY  - 1981
SP  - 101
EP  - 118
VL  - 15
IS  - 2
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1981__15_2_101_0/
LA  - en
ID  - M2AN_1981__15_2_101_0
ER  - 
%0 Journal Article
%A Canuto, Claudio
%T A hybrid finite element method to compute the free vibration frequencies of a clamped plate
%J RAIRO. Analyse numérique
%D 1981
%P 101-118
%V 15
%N 2
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1981__15_2_101_0/
%G en
%F M2AN_1981__15_2_101_0
Canuto, Claudio. A hybrid finite element method to compute the free vibration frequencies of a clamped plate. RAIRO. Analyse numérique, Tome 15 (1981) no. 2, pp. 101-118. http://www.numdam.org/item/M2AN_1981__15_2_101_0/

1 P M. Anselone, Collectively Compact Operator Approximation Theory to Integral Equations, Prentice Hall, Englewood Cliffs, N.J., 1971. | MR | Zbl

2 K. Brandt, Calculation of vibration frequencies by a hybrid element method based on a generalized complementary energy principle, Int. J num. Meth. Engng., v. 12, 1977, pp. 231-246. | Zbl

3. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O , R-2, 1974, pp 129-151. | Numdam | MR | Zbl

4 F. Brezzi, Sur la méthode des éléments finis hybrides pour le problème biharmonique, Num. Math. v 24, 1975, pp. 103-131. | MR | Zbl

5. F Brezzi and L. D. Marini, On the numerical solution of plate bending problems by hybrid methods, R.A.I.R.O., R-3, 1975, pp. 5-50. | Numdam | Zbl

6 C Canuto, Eigenvalue approximations by mixed methods, R.A.I.R.O. Anal Num., v. 12, 1978, pp. 27-50 | Numdam | MR | Zbl

7. C. Canuto, A finite element to interpolate symmetric tensors with divergence in L 2 (To appear on Calcolo). | Zbl

8. P G Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam-New York-Oxford, 1978. | MR | Zbl

9. G. Fichera, Numerical and Quantitative Analysis, Pitman, London-San Francisco-Melbourne, 1978. | MR | Zbl

10. P. Grisvard, Singularité des solutions du problème de Stokes dans un polygone (To appear)

11 W. G. Kolata, Eigenvalue approximation by the finite element method : the method of Lagrange multipliers (To appear) | MR | Zbl

12 V. A. Kondrat'Ev, Boundary problems for elliptic equations in domains with conical or angular points, Trans Moscow Math Soc., v 16, 1976, pp 227-313. | Zbl

13. B. Mercier and J. Rappaz, Eigenvalue approximation via nonconforming and hybrid finite elements methods, Rapport Interne du Centre de Mathématiques Appliquées de l'École Polytechnique, n° 33, 1978

14. B. Mercier, J. Osborn, J. Rappaz and P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods (To appear). | MR | Zbl

15. T. H. H. Piang and P. Tong, The basis of finite element methods for solid continua, Int. J. num. Meth. Engng., v. 1, 1969, pp. 3-28. | Zbl

16. J. Rappaz, Approximation of the spectrum of a non-compact operator given by the magnetohydrodynamic stability of a plasma, Num. Math., v. 28, 1977, pp. 15-24. | MR | Zbl

17. J. Rappaz, Spectral approximation by finite elements of a problem of MHD-stability of a plasma, The Mathematics of Finite Elements and Applications III, MAFELAP 1978 (Ed. J. R. Whiteman), Academic Press, London-New York-San Francisco, 1979, pp. 311-318. | MR | Zbl

18. G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973. | MR | Zbl

19. B. Tabarrok, A variational principle for the dynamic analysis of continua by hybrid finite element method, Int. J. Solids Struct., v. 7, 1971, pp. 251-268. | Zbl

20. R. A. Toupin, A variational principle for the mesh-type analysis of the mechanical system, Trans. Am. Soc. Mech. Engngs., v. 74, 1952, pp. 151-152. | MR | Zbl

21. P. G. Gilardi (To appear).