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R A I R O Analyse numénque/Numencal Analysis
(vol 13, n° 2, 1979, p 75 à 100)

SEM1DISCRETE AND SINGLE STEP
FULLY DISCRETE APPROXIMATIONS

FOR SECOND ORDER HYPERBOLIC EQUATIONS (*)

by Garth A. BAKER (*) and James H. BRAMBLE (2)

Abstract — Fimte element approximations are analysed, for initial boundary value problems
far second ox&ezJiyperboUc équations For both semidiscrete andfully discrete schémas, optimal
order rate o f convergence estimâtes in L2 are der wed, us ing L2 projections of the initial data as
starting values

À new class of single step fully discrete schemes is developed, which are high order accurate
in time The schemes are constructed from a class of rational approximations to e~z, analytic in
neighbourhoods of the imaginary axis The appi oximations require the solution of 2 s hnear Systems at
each time step, with the same real matrix, to yield convergence rate k3, where k is the time step and s is
an arbitrary positive integer

Resumé — On étudie des approximations par éléments finis de problèmes aux limites, avec
conditions initiales, pour des équations hyperboliques du second ordre utilisant les projections L2 des
données initiales comme valeurs de départ, on obtient des estimations d'ordre optimal du taux de
convergence, pour les schémas semi-discrétisés et pour les schémas complètement discrétisés

On introduit une nouvelle famille de schémas complètement discrétisés à un pas, d'une précision
d'ordre élevée en temps On obtient ces schémas à partir d'une famille d'approximations rationnelles
de e~z, analytiques dans des voisinages de l'axe imaginaire Ces approximations nécessitent la solution
de 2 s systèmes linéaires à chaque pas de temps, correspondant à une même matrice réelle, et conduisant
à un taux de convergence en k5, ou k est le pas de temps et s un nombre entier positif arbitraire

1. INTRODUCTION

1.1. Notation

We consider approximating the solution of the following initial boundary
value problem. Let Q be a bounded domain in MN, with smooth boundary dQ
and leLO < t*_< oo be fixed. A function u^ (0, t*]_-> M1 is sought which
satisfies

utt + Seu = 0 in Q x (0, t*],

u = 0 on 5Q x (0, t*] ,

u(0) = u° in Q, ' V

tt»(0) = uf in Q,

(*) Manuscrit reçu le 7 avril 1978
(1) Division of Engineering and Applied Physics, Harvard University, Cambridge, Massa-

chusetts ( U S A ) and Centre de Mathématiques Appliquées, École Polytechnique, Palaiseau,
France

(2) Mathematics Department, Cornell University, Ithaca, New York, U S A
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7 6 G. A. BAKER, J. H BRAMBLE

u° and u° are given functions, and ££ dénotes the second order elliptic operator

£ \ j )
,,~i Sx, V dxj

with atJ = a3le C0 0^), i, j = 1, 2, . . . , N ; a0 e C™(Çl) and a0 > O on Q.

^f is assumed to satisfy the uniform elhpticity condition

for all x e Q and for all (5^, . . . , t,N)e MN, for some constant a > 0.

The following notatfon will be used throughout. For s ^ 0, HS(Q) will dénote
the Sobolev space of order 5, of real valued functions on Q. The norm on HS(Q)
we dénote by || . \\HsiQ). In particular, the inner product on L2(Q) = H°(Q)
we dénote by (., .), and the associated norm by || . ||.

We introducé certain subspaces of the Sobolev space HS(Q\ denoted by
HS{Q). In order to define HS{Q), we first note that there exists a séquence
{'kJ}J^1in non decreasing order of real positive eigen values of the operator £?,
and a corresponding séquence of eigenfunctions { 9 ^ } ^ ! <=z CCO(Q)J satisfying

<Pj = 0 on dQ. J

The set {cpj}7^i is complete in L2(Q), and may be chosen orthonormal.

Define for 5 ^ 0 , the space

H%Q) ={v:\\v\\s = {fi\(v, (p)\2Xf < oo } .
J=I

Then H°(Q) = L2(Q\ and it may be shown, [7], that

HS(Q) = { v e H%n) : gJv - 0 on dQ, j < s/2 },

and that on HS{Q), the norms 11 . | |s and 11 . | |HS(n) are equivalent.

For s < 0, HS(Q) is defined as the dual of H's(a) with respect to L2(Q).

The norm on H~S(Q) is given by

The solution of (1.1) is formally given by

s i n

R A.I R O Analyse numénque/Numencal Analysis



SECOND ORDER HYPERBOLIC EQUATIONS 77

for t ^ 0, from which ît follows that for 0 ^ t ^ t*,

I N O I I Ï + I K W I I Î I = I | M 0 I I Ï + | K 0 | | Ï - I , for a i l s ^ O ( 1 4 )

In Section 2, we dérive the estimâtes for semidiscrete approximations

sup 11 u(t) - uh(t) 11 < C(t*)hr[ 11 u° | |P + x + 11 uf 11r] , (15)
O ^ t ^ t *

usmg standard finite element spaces of piecewise polynomial functions of
degree r — 1, r ^ 2 The estimâtes are obtained with L2 projections of the
initial data as startmg values These estimâtes were in essence denved prior
to this work by the first author in [3, 4], using a special manipulation of an
energy formulation Here (1 5) is obtained via a reformulation of (1 1) and
the semidiscrete approximation as appropnate first order Systems

We note also that Dupont [9] and Crouzeix [8], have obtamed L2 estimâtes,
however the choice of statmg valves yield unnaturally higher smoothness
assumptions on the solution

1.2. Summary of the results

In Section 3, we consider single step fully discrete approximations via
rational approximations to e~z The rational functions are required to satisfy

| r v ( i j 0 - < r " | < C v | y | v + 1 , | y | < a , (1 6)

for constants Cv < oo, a > 0 and v > 1

In addition such rational functions are divided into two classes, according
to either

| rv(iy) | < 1 for ail real y, (17)

k v M l ^ l for \y\^a, (1 8)

for some constant a > 0 The functions satisfying (1 7) we designate as Class
—r-1, anxHhose-satisfymg (1 8)~as Crass i-II

For schemes defined by rational functions of Class i-I, we obtam estimâtes

max || W? - u(nk)\\ = C(f) { h'[l\ u° \\r+t + | |w? | | J
+ fcv[l|w0||v + 1 + | | u ? | | v ] } î (1 9)

where k dénotes the discrete time step and W", the approximation at the
time level t = nk

For Class i-II schemes, we obtam the same estimate conditionally That is,
provided k^ Coih, for a constant C dependmg on inverse properties of the finite
element space Class i-I schemes are unconditionally stable and convergent

Again the estimâtes (1 9) are obtained usmg L2 projections of the initial
data as starting values
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78 G A BAKER, J H BRAMBLE

Another development of this paper is the construction of a family of rational
functions {rs(z)}sàl of class i-l, which is done in Section 4 Bnefly, for each
integer s ^ 1, and any given real number x > 0, we estabhsh the existence of
a séquence of polynomials { pj,s) }^=0 with real coefficients, where P„ is of degree
at most n, such that

(1 -x2z2Ye-'= £p<s )MA (1 10)
n = 0

for all z
For s = 1, 2, , we then define the rational function

for | Re (z) | < - rs is analytic in a neighbourhood of the imaginary axis,
x l

and has poles at z = ± - on the real line rs will satisfy (1 6) with v = 2s,
x

and we show that there exists a real number x(s) > 0 such that for the choice
x^x ( s \ rs satisfies (1 7)

This family of rational functions provides schemes of arbitrary accuracy
rn time, i e we have (1 9) with v = 25 In analogy with the work of N0rsett [12],
and Thomée and the present authors in [5], for parabolic équations, the result-
ïng scheme for rs requires the solution of 2s hnear Systems with the same real
matrix at each time level

Other examples of Class i-I rational functions are provided by Pade
approximations, m particular, the diagonal and first two lower codiagonal
entries In gênerai, the use of Padé approximations requires the solution of
complex lmear Systems, in contrast

A table of the polynomials { P£ }2ï0 and a convement choice of the para-
meter x(s) is given for s = 1, , 5 in the Appendix

Crouzerx [8] has also analysed high order in time, single step, fully discrete
approximations There, the choice of startmg values is motivated by [9]

Throughout the paper, C will dénote a genera! constant, not necessanly
the same in any two places

2. SEMIDISCRETE APPROXIMATIONS

We introducé the solution operator T of the associated elliptic boundary
value problem T L2(Q) -• L2(Q) is defined by

a(Tf, v) - (ƒ v), for all u e i j 1 ^ ) , for given /eL 2 (Q), (2 1)

R A I R O Analyse numerique/Numencal Analysis



SECOND ORDER HYPERBOLIC EQUATIONS 79

where a(., .) dénotes the bihnear form

f f £ 5© 3i> } ,
a(co, v) = < > all^——~>dx, for co, ve H1{Q). (2.1. a)

Ja L 1,3=1 oxi oxj )

T has a discrete spectrum of real positive eigenvalues { l ^ } ^ ! , where
[ij = X;l with Xj given by (1.3). Now let L2 dénote the space L2(Q) x L2(Q)
and define the operator J : L2 -• L2 by

0 T

- ƒ 0

We now reformulate (1.1) in terms of the operator J as follows. Let

Then, (1.1) is equivalent to

JUt + U == 0 , t > 0 l

1/(0) TT° ' ( 2 ' 2 )

Now, let 0 < h < 1 be a parameter, and {î*}o<*$i a family of finite dimen-
sional operators approximating the operator T. In particular, let

be a standard finite element space of piecewise polynomial functions of degree
r — 1, with the approximation property

inf ( | | o ) - x l i + fcllü>-xlli}<C^|co|lHs<a),

for ail ©e H1(Q) n HS(C1), for some constant C independent of h, 1 ^ s < r.
The operators Th : L2(Q) -• Sr

h(Q) are defined by

<TJ9x) = (f,x), for ail X ^ S ^ ) , for given / e L 2 ( Q ) . (2.4)

The family { Th}0<h^l has the foliowing properties:

Th is symmetrie, positive semidefinite on L2(Q\ and positive definite on Sr
h{Q) (2.5)

\\(T-Th)f\\^Chs\\f\\s_2i for ail ƒ e Hs~2(Ql 1 < s < r , (2.6)

for some constant C independent of h.

Th has a discrete spectrum of eigenvalues { 0 } u { \ih
u \i

h
2, . . ., u^ }, in non-

increasing order, for some integer M~M(h). Furthermore, there exists an
h0 > 0 such that for h ^ h0, u* < A, for some constant A > 0. (2.7)

Proofs of (2.5)-(2.7) may be found in [1] and [6].

vol 13, n° 2, 1979



80 G. A. BAKER, J. H. BRAMBLE

The semidiscrete approximation for the solution u of (î . t) is defined as
the mapping uh[0, f*] -» Sr

h(Q) satisfying

Thu
h
n + uh = 0, 0 < t

\ (2.8)

where P dénotes the L2(Q) projection operator onto Sr
h(Q). Using (2.1) it is

easily seen that (2.8) is equivalent to the définition of the standard semi-
discrète approximation, in variational form, using L2(Q) projections of u°
and u° as starting values, as given for example in [3]. For the subséquent
analysis, we now reformulate (2.8) as a first order System, in analogy with
(2.2). Set

then (2.8) is equivalent to

J ^ + F = 0 , 0<t<t*9 j
V(0) = PC/0 , J V * '

where

J f c = I I . IL —> OjiVÜj X I J ^l^J ,
\ — ± \j J

and P dénotes the L2 projection operator onto Sr
h(Q) x Sr

h(Q).

W e define a form ((.)) on EL2 by

((O, *F)) = (4>la \|f i) + ÇTh§2> ^2) > (2.10)
for

and ¥ = rMel2 .

The associated seminorm which we dénote by ||| . |]| is given by

>))*. (2.11)
We note that

((J»®,«)) = 0, O e L 2 . (2.12)

The following theorem gives estimâtes in L2(Q) for the error u{t) - u\t).

THEOREM 2 . 1 : Let u be the solution of (1.1) and let uh be the semidiscrete

approximation defined by (2.8), or equivalently (2.9). Suppose that u°eÊr+ ^Q)
and u° e H'(Q). Then there exists a constant C = Cr(t*\ such that

sup || uit) - IAOII ^ Ch'[\\ u° | | r+1 + || uf ||r] . (2.13)

R A.I.R.O. Analyse numérique/Numerical Analysis
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Proof : Set £ = U - V, where U is defined by (2.2) and V by (2.9). Then

/„£, + £ = (Jh-J)Ut, 0<t^t*, (2.14)

£(0) = (/ - P)U°. (2.15)

Setting p = (Jh - J)Ut (2.14) gives

{{JhEt, £,))+((£, £«))=((p, £,)),

and so, by (2.12),

1 à , à
III E(t) III2 = — ((p(t), E(t))) - ((pit). E(t))).

2dt dt
Integrating this last équation, we get

III E(t) III2 = Hl £ ( 0 ) III2 + 2((p(£), £( t ) ) ) - 2((p(0), £(0) ) ) - 2 [' ((p,(x), E{z)))dz.
J o (2.16)

From (2.4), it follows that ThP = Th on L2(Q). Hence, from (2.15), and (2.11),

ll |£(0)| | | = II u ° - P « ° II, (2.17)
and

((p(0),£(0))) = ([Th- T]M(,(0),U° - Pu0) = - (7u(t(0),M° - Pu0)
= ( M ° , U ° - P U ° ) = | | M ° - P H ° | | 2 . (2.18)

Using (2.17) and (2.18) in (2.16),

III £(0III2 = 2((p(t), £ « ) ) - II M0 - Pu0 ||2 - 2 1 ((p,(x), E(x)))dx- 2 r ((P((T),

r
- 2 ((p.W,

Jo

Hence

sup | | |£( t) | | |2 <c\ sup
J o

Now, from (2.2), (2.6), and (1.4),

I P(O III = II (Th - T)utt(t) || = || (T, - T)J?u(t) ||
^ Ch'\\u{t)\l^Ch'[\\u°\\r + | |«° | | r_ ,]. C.20)

Similarly (2.2), (2.6) and (1.4) give

|| (T, - T)<£M,(T) ||2rfx

' sup || u,(t) ||? < Cfc3'[|| u° | | r + 1 + || ur° | | r ] 2 . (2.21)

vol 13, n° 2, 1979



82 G. A. BAKER, J. H. BRAMBLE

Hence, using (2.20) and (2.21) in (2.19), we obtain

sup |
o ^ t ̂  t*

The resuit of the theorem now follows.

REMARK : We point out that from the above theorem, it easily follows that
the optimal rate of convergence 0(/ir) in L2(Q) is obtained using any choice
of starting values of uh(0) and u?(0) e Sr

h(Q) satisfying

\\u°-u\0)\\ = 0{hr)
and

3. SINGLE STEP FULLY DISCRETE APPROXIMATIONS

In this section, we define and analyse fully discrete schemes obtained from
rational approximations to e~z.

Let r be a complex valued rational function defined for the complex variable z,
satisfying

| r ( Î 3 0 - < r * | < C | y r \ \y\**o, (3.1)

for constants 0 < C < o o , a > 0 and v > 0.

DÉFINITION 3.1 : r satisfying (3.1) is said to be of Class i-î if
| r ( i » | < l , forallrealy. (3.2)

r satisfying (3.1) is said to be of Class i-II if, for some constant a > 0,

| r(iy) | < 1, for ail real yy with \ y \ < a . (3.3)

Clearly, rational functions fo Class i-î are also of Class i-IL However a
distinction is made since Class i-I functions will yield schemes which are
unconditionaly stable and convergent. The schemes are defined as follows.

The solution of (2.9) is given by

" t^O, (3.4)

and hence for k > 0, the proposed discrete time step,

V(t + k) = e~kK' V{t), t>0. (3.5)

Now let r(z) = D~1(z)N(z\ where D and N are minimal degree polynomials.

R.A.I.R.O. Analyse numérique/Numerical Analysis
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The fully discrete approximation to (1.1), derived from (3.5) we dénote by
{ ^"}«^o c Sr

h(Q) x Sr
h(Q\ and is defined by

W° = PU0.

We dérive estimâtes for 11 u(nk) — W"\\ by comparing Wn with the semi-
discrète approximation V(nk), n = 0, 1, . . . . To this end, we defme the fonction

From (384), (3.6) and (3.7), it follows that

Wn - V(nk) = Fn(kJ; X)PU° . (3.8)

The following simple resuit will be needed.

LEMMA 3 . 1 : Let r be of Class i-IL Then, there exists a constant C* < oo
such that

\rn{iy) - e~lny\ ^ nC* | y \l, (3.9)

for | y | ^ a and 1 < l ^ v + 1, n = 1, 2, . . . , .

Proof Let a* =min (a, 1). Then (3.1) holds with a replaced by a*. Hence

\r(iy)-e'iy\^C\y\l, \y\<a*t (3.10)
for 1 ^ 1 < v + 1.

Now, if a* < a, from (3.3), for a* < \y\ < a, and any integer 1 < / < v + 1,

I r(iy) - e"** | < 2 = 2 | y \l(^A ( \ ) ^2\y | V ) " ( V + 1 ) = C* | y \l, (3.11)

with C* < oo. Hence, from (3.10) and (3.11), we have for some C* < oo,

\*<iy)-e-l>\<C*\y\l
9 l y K o t , (3.12)

for 1 ^ / < v + 1.

No\Hbr an integer n ^H^

rn(iy) - e~lny = {r(iy) - e" iy)"Z rJ{iy)e"l[n"J^)y (3.13)

Hence, using (3.12) and (3.3) in (3.13), we get for | y | ^ a,

e-l*> | ^ | jQy) _ g--y | *£ | r (^ ) |, ^ n C * | y |1 s 1 ^ / < y + 1 .

It is clear that, by choosing a = oo^(3.9) holds for Class i-L
Let \i\, .. . ,JIM, be the set of nonzero eigen values of Th with correspon-

ding eigenfunctions v|/J, . . .,V|/M, chosen orthonormal in L2(Q), Ï. C.

vol 13, n° 2, 1979



84 G. A. BAKER, J. H. BRAMBLE

and
( + . \ ^ ) = 8 ( J , i j = 1,2,. . . ,M.

Now let Sh dénote the space S^Q) x Sr
h(Q), furnished with the inner pro-

duct ((. , .)) and norm ||| . | | |.
It is easily shown that the operator Jh : Sh -> Sk posseses a corresponding

set of purely imaginary eigenvalues { r^ }f= _M, given by

and corresponding eigenvectors {O, }Ji _M, given by

*-. = 4= f ^ V j= l , 2 , . . . ,M.

Since we shall subsequently work with complex valued functions, the pre-
viously defined inner product ((.,.)) of (2.10) is naturally extended to

2), on S„,

where in gênerai cp dénotes the complex conjugate of cp. Since { ^ J } ^ ! is
an orthonormal basis for Sr

n(Q\ it is easily seen that {Q>j}f=-M forms a complete
orthonormal set in Sh, with respect to the above inner product ((. , .)).

Hence, for any Z e L2, we have

P Z = X ((z,o,))a>7, (3.14)

and

| | |PZ|| |=f I l a z^^ l^^ l l lZHI . (3.15)

LEMMA 3.2: Let r be a rational function of Class i-L Then, there exists
a constant C, such that for Z e l2, and nk = t < t*

| | |i r
H(fc/Jr

1)JiZ|||<Cfe ï-1 | | |Z|||, (3.16)
1 < / < v + 1.

Proof : From (3.14), it foliows that

R A I R O Analyse numérique/Numencal Analysis
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and so from (3.9) and (3.15), for 1 < Z < v + 1,

|||F,M-I)JIZ|||=( f l^
\j=~M

f n2C*2/c2Mîl,r2M-nJ2M((Z,^))|2Y (3.17)
J=-M J

= nC+k{ £
\J=-M

which gives (3.16).

LEMMA 3.3: Let r be a rational function of Class i-IL Suppose that the
operator Th is such that

2, (3.18)

for some constant C t > 0, independent of h. Then, for k chosen such that

k^aCjh, (3.19)

there exists a constant C such that, for Z e l2,

lll^/cJ-^ZlH^Cfc'-MIIZlII (3.20)
/or 1 < J < v + 1.

Proof : From (3.18),
max I T I J " 1 = ( J 4 ) - ± < Cr*fc"x.

Hence, with (3.19) satisfied, we have

fcKT
With the above inequality and (3.9),

WK^C^Kr, (3.21)
for 1 < / < v + 1. Now using (3.21), the resuit follows by the same argument
as (3.17).

We remark that a sufficient condition for the assumption (3.18) to hold
is that the spaces Sr

h(Q) possess an inverse property

Hxlli^Cfc-MlxlU for ail xeS£(fi), (3.22)

for some constant C independent of h.

We note also the following stability resuit for the schemes defined by (3.6).
If r is of Class i-I, then for Z e L2,

I I I F ^ - ^ Z I H ^ C I I I Z I I I , n = 0 , l , . . . , (3.23)

vol 13, n° 2, 1979



86 G. A. BAKER, J. H. BRAMBLE

and
| | | ^ * | | | < | | | C / ° | | | . (3.23a)

If r is of Class i-II with (3.22) and (3.19) satisfied, then (3.23 a) holds.
Before proceeding to the dérivation of the error estimâtes, we define the

following auxiliary functions.
Let Q be the smallest integer such that

kXj > 1, for ; ^ Q .

For given v e L2(Q), we define

Then

Ld

Also,

V^eC

II V -

for any

Define

°°(Q)

F<*>||

m ^

and

0,

satisfies

11 V{k)
l i s ^ II

lis,

K l i s ,

for £

/ u O ( k ) \

\ut V

(3.24)

s^O, p^O. (3.25)

(3.26)

(3.27)

THEOREM 3 . 1 : Let u be the solution of (1.1), and let r be of Class i-I. Let
{Wn}n^0 be the séquence of approximations defined by (3.6). Then there
exists a constant C = C(r, v, t*) such that

sup | | W\ - u(nk) || < C { hr[\\ u°\\r+1 + || u? | | J
0^"^ t '* / k3 + ^ v [ | | « 0 | | v + i + ||wï°||v]}- (3.28)

Proof : Define the opera tor A - H2(Q) x L2(Q) -> H2 by

0 ^

y o,
It is easily shown that in Hv

V

From (3.8) and (3.29),

V(nk) - Wn = Fn(kJkl)(U° - U0(k)) + ]T Fn(kJ^)Jl
h(J - JJAI+1C70(ft)

1 = 0

+ Fn(/cJft~ ^ J ^ *AV + x U0(k). (3.30)

R A I R O Analyse numénque/Numencal Analysis
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Thus, from (3.30),

I V{nk) - W\\\ < \\\Fn{kJ^)(U° -

t \Fn(kJ^)J'h(J - A)A'+

\Fn{kJ^)(J -

1=0 (3.31)
Now, from (3.23), (3.24), (3.25) and (3.6),

^ X i / 0 - (/0 (*>)| | |2 ^ m u° - c/0(kMll2

= C { 11 u° - uO(t> 112 + (Th [u? - u? ™], u? - u?(k')}

= C { | | u° - u0(k) | | 2 + ((7i - T)[«? - M ? W ] , u,° - M,°»>)

+ (T[M? - « ? * > ] , « ? - « » « ) }

< C {|| u° - M°<fc>|t2 + || (Tfc - T)[«r° - u(
0«] || || u? - ur\\

Also, from (3.23) and (2.6),

)(J - Jh)AU°™ Hl < C || (T -

Now, from (3.16) of Lemma 3.2,

For / + 1 even, we have

1 = 1

and for / + 1 odd, .

? 2

A < + i = ( _ l ) 2
0

0

(3.32)

ChT || u° ||r. (3.33)

(3.34)

(3.35)

(3.36)

Thus a simple computation using (3.351 and (3.36) yields
f + i

' .|| (T - Th)2> 2 u?™ | |, I + 1 even,

+ 1 odd.
(3.37)

||(T-T,)j5f2 uO(t'||, 1 + 1

Hence, from (3.37X (2.6) and (3.26), for / + 1 even,

m(j-JJA1+IU°M\\\<af\\i#<»\\r-l+l<cfc'fc-"-1»!!!*?!!,, (3.38)
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and for l + 1 odd,

III (J - Jft)A
/+1[/°"<> III ^ Of\\ u°<*> | U , ^ Ch'k-*-» || u° | | r + 1 . (3.39Ï

Also, from (3.16), (3.35), (3.24), (3.26) and (2.6), for v + 1 even

Cfc2v m Av + i[/°<*> m2 = C/c2v {|| &~

|w° | | 2
+ 1 + ([Th -

C{k^[\\u°\\l+l + \\u<?\\î-] + h>'\\u<î\Yr}. (3.40)

Similarly, from (3.16), (3.36), (3.24), (3.26) and (2.6), for v + 1 odd,

<Cfc2v||| AV |||

^ Ck2v {11 «t° 112 + ([Th -

C{fc2l||««>||v
2

+1 + | K 0 | | v ] + / i 2 ' | | « 0 | | ? + i } . (3.41)

Combining the inequalities (3.38), (3.39) in (3.34), we obtain

£ - Jh)A' +1U°"> 11K C/f[| | u° | U ! + ] | u? | |r] . (3.42)| | |
1=1

Now combining (3.32), (3.33), (3.42), (3.40) and (3.41), in (3.31), we obtain

III V{nk)- W" Hl < C { V [ | | « ° | | r + 1 + || u,0||r] + fcv[||u0||v+1 + | | u , ° | | v ]} .
(3.43)

The resuit of the theorem now foliows from (3.43) and (2.13) of Theorem
2.1 .

We have thus established the unconditional convergence with optimal
accuracy for schemes defined by Class i-I rational fonctions. For Class i-îl
fonctions, the same estimate (3.28) holds ho wever, conditionally.

THEOREM 3.2 : Let u be the solution of (1.1), and let r be of Class UIL Let
{ Wn}n^0 be the séquence of approximations defined by (3.6). Suppose that
the spaces Sr

h{Q) satisfy an inverse property (3.22) and that k and h are related
by (3.19). Then, the error estimate (3.28) holds.
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Proof : The resuit is obtained via the same argument used in Theorem 3.1,
with the exception that the results of Lemma 3.3 are used instead of those
of Lemma 3.2. The proof is thus omited.

REMARK : We point out that with the results of the above theorems, the
optimal rate of convergence 0{hr + fev) is obtained with any starting values
W?9 Wl e Sr

h{Q) satisfying

\\
and

\\W% - M? || = 0(hr).

4. RATIONAL APPROXIMATIONS OF ety

In this section, we give examples of rational functions yielding the results
of Section 3. Particularly, we contruct below a family of Class i-L

4.1. A family of Class i-I

Let s be a positive integer, and y > 0 a real parameter, and consider the
complex valued function g(x) — ey\l — x2)5, defined for complex x. g is ana-
lytic, and so there exist functions aj,s)(y), n = 0,1, . . . , such that

ey\\ - x2)s = J a{
n
s){y)zn, for all x . (4.1)

n = 0

It follows easily that the functions aj,s) must satisfy

a (
0 % ) = l (4.2)

o45)'(y) = o4Jii(y), n = l , 2 , . . . , (4.3)
where

(4.4)

It is clear from (4.2)-(4.5) that a(„s) is a polynomial of degree n, in the real
variable y. The set { oc(

n
5) }y

n^0 also has the following properties.

LEMMA 4 .1 : Let s ^ 1 be an integer. Then, there exists a real number yls) > 0
such that for 0 < y ^ y{s)

(-lMl(y)>0, « = 0 , 1 , . . . , s, (4.6)

(-l)"otfï(y)<O, B = 1 , 2 , . . . , S , (4.7)
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and

Proof : From (4.4) and (4.3),),

- ir \y^]Md\i = (s) + (- i)" PaS'ox^
Jo W Jo ( 4 9 )

Hence choosing yjf} > 0 such that

the resuit (4.6) follows.
Also, from (4.3), (4.4) and (4.6), for 0 < y < / s ) ,

ï(y) = (- ïMiïo) + (-!)" o4s>"
Jo

= - (-1)" 1a(
27B_1)i

which gives (4.7).
For n = 5 in (4.9), for 0 ^ j ; < j ; ( s ) ,

by virtue of (4.1), which gives (4.8).

LEMMA 4.2: Let Rs(y, x) be the complex valued function

- T 2 ) s , (4.10)

defined for \ Rex \ < 1. And let yis) be chosen as in Lemma 4.1. Then

\Rs(yJQ\^U (4.H)
for 0 < y < j ; ( s ) , /or a/? rea/ ^.

Proof : Define the fonctions

f(y,v)= ZaJr^K, (4.12)

F{y, Ö = ƒ (y, iQ ƒ (y, - flj). (4.13)

Then, from (4.10), we have

| R(y, iÇ) |2 = F(y, Ç)/(i + ^2)2 s . (4.14)

From (4.1) and (4.12),
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and so, with (4.14),
ö l 2 = l . (4.15)

dF
We now show that — (y, £) ^ 0 for 0 < y < y(s).

33;

From (4.12) and (4.2) and (4.3),

irM= t °4S- i(y "̂= * X °4W - 4WS +* = x ƒ (y, T) -
öyy „=1 „=o ( 4

Now, from (4.13), (4.16),

n=0 m=s+l

for 0 <y ^ j / s ) , by virtue of (4.6) and (4.7). (4.11) now follows from (4.14), (4.15)
and (4.17).

We now define the polynomials

föXx) = ( - l)nxnén
s)(- J , n = 0 , 1 , • • - , (4.18)

for real x > 0.

Making the change of variables x = - , z = — xy in (4.1), we obtain
y

e~z{l - x2z2f - £ p«(x)z", (4.19)

valid for all x > 0 and for all z, s = 1,2, . . . .

We now define the family of rational functions { rs } s 2 ? 1 by

2s
* V ) S , (4.20)

n = 0

for | Rez | < 1/JC.
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From (4.19) it follows that there exists a constant Cs(x) such that

^Cs(x)\i5\
2s+l, (4.21)

for ail real Ç, with | % | ^ 1.
Also, from the définition (4.20) and Lemma 4.2, it follows that for given

s ^ 1, there exists an x(s) > 0 such that

k s ( i 9 l ^ l , (4.22)

for ail real Ç, for the choice JC ̂  JC(S).

The above results we summarize in the following theorem.
THEOREM 4 . 1 : For each integer s > 1, there exists a set of poîynomials

{ Pns) }n^i with real coefficients, with pj,s) having degree at most n, n = 0 ,1 , . . . ,

e~z(\ — x2z2Y — Y R(sVrizn

n = 0
/or all real x, and for all z.

If for x > 0, rs dénotes the rational function

r,(z) = | P(
w

s)(x)z7(l - x2z2y, (4.20)

defined for \ Rez \ < 1/x, then there exists constants xis) > 0 and Cs(x) such
that for x(s) < x < oo ,

I rJliQ -e~l^\^ CJLx) \ ̂  | 2 s + 1 , for \ Ç | < 1, (4.21)

A table of the poîynomials P<fl), n — 0,1, . . . , 2s, for s = 1, . . . , 5 along
with convenient choices of the parameter xis) is given in the Appendix.

By virtue of the results (4.21), (4.22) and Theorem 3.1, the fully discrete
schemes defined by (3.1) using the rational functions rs of (4.20) yield the
stability (3.23 a) and the rate of convergence estimâtes (3.28), with v = 2s.

We now examine the computational steps involved in using the rational
functions rs. In this case (3.6) is equivalent to

0

Ê(-
j = 0

wi th ${i\ = 0, p<2
s>+1 = 0, a n d p(

fl
s) = p<,s), n = 0 , 1 , . . . , s.
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The above équations thus uncouple, into

(Th + x2k2lfwrl = £ ( - lYk*'T;-J[$ftx)WÏ - kfô)+1{x)WÏ] , (4.23)
J = 0

(Th + x2k2iywri = t ( - m2i-lTrj[k$îïxwn2 - PSj-iW^a» (4.24)
j = o

It is now easily seen that each of the above équations is equivalent to s
Systems of linear algebraic équations. As an example, we outline the computa-
tional steps for the case s = 2. From (4.23) and (4.24), for s = 2, we have

(Th + k2x2I)2Wrl = TÎ\$$\x)Wl - fcp<2>(x)*rç]

- kTh\k$2Xx)Wl - k2fê\x)Wi\ + fâ\xyk?Wl, (4.25)

(Th + k2x2I)2Wï+1 = T2ffi\x)WZ + kTh[ffl\x)W; - k^2\x)W^]

WÏ - k3 p(
3

2)(x)Wî. (4.26)
B<2)(x)

Set ^ = Th + x2k2l, and Z = ^ ? + 1 - ^ ^ W[. Then (4.25) becomes

or

hThUh
AhTh-UhZ =

Now set Y = T^1AhZ. TheiLY is obtained as the solution of

r B*,2)(
(Y, x) + x2k2a(Y, x) = I B'o2)(x) - ^

for all x e Sr
h(Q). Z in turn is obtained as the solution of

(Z,x) + x2k2a(Z,X) = (Y,xl %£
Finally

R ( 2 V Y Ï

wn+1 = z x4
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W%+1 may be solved for similarly, the whole procedure thus requiring
4 linear Systems to be solved at each time level.

For the above scheme (5 = 2), we thus have the error bounds (3.28) with
v = 4.

4.2. Other Class /-/ schemes

In [5] and [12] the folio wing rational approximations are discussed. For
any real b > 0, it is shown that

z X n + 1

( 4 2 7 )

for Rez > — l/2b. Hère Pn(b) is a polynomial of degree n, given by

where L^ dénotes the Laguerre polynomials of order 1, of degree n.
Using (4.27) the rational functions Rv are defined by

Re(z) > — l/2b, v ^ 2, where b > 0 will be a parameter chosen to give Rv

certain desired properties. In particular, Njefrsett [12] shows that for v == 2, 3,
b = bv_1? where bv_x dénotes the smallest zero of L{^lu Rv satisfies (3.1)
and (3.2). For v = 4, with the choice of b as the next to smallest root of
Ltfl 1 = L%\ Rv satisfies (3.1) and (3.2). See [12] for details.

Padé approximations.
The gênerai entry of the Padé table is given by

tp,q(z) = NPtq(z)/DPiq(z), where, p ^ 0, q ^ 0,

and

and

It is known that rpq satisfies (3.1) with v = p + q. (3.2) is satisfied by rpq

for p ^ 1 and p — 2 ^ q < p. In fact | rp q(iy) | = 1 for ail real y. A partial
table is contained in [13].

Using the rational functions rpq(z) in (3.6), we thus have estimâtes (3.28)
with v = p + q, p = 1,2, .. .,p - 2 < g ^ p. The estimate (3.28) for
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p = q = l was prior to this work derived by the first author [3]. Crouzeix [8]
also dérives error estimâtes for schemes defined by Padé approximations,
using different techniques for starting values.

5. NONSTANDARD METHODS

In this section, we point out that certain nonstandard Galerkin methods
proposed for approximating solutions of the associated Dirichlet problem,
provide discrete solution operators Th which satisfy the conditions (2.5)-(2.7).
These methods thus fit int o the frame work of this study. In particular, the
three methods reviewed below have been proposed with the aim of relaxing
the restriction of having the subspaces Sr

h(Q) satisfy the boundary conditions.

5.1. Nitsche's method [10]

Spaces S£(Q) a H1(Q) of continuous piecewise polynomial fonctions of
degree r — 1, for r ^ 2 are used. The spaces are required to satisfy

x ml { || V - xll + h\\ V - x Urnen) + fc*|| V -%\\L2m)

XeSr(Q) + fc* 11 V - x fIHI(«D }<Chs\\V\\s (5.1)

for 2 < s ^ r, for some constant C.

In addition, the following inverse property is required

fn <C lfc-*llxll-.«, (5-2)

f / 5\|/ d<p
- ((p-^ + ̂ - ^ -

JanV on dn

for all %eSr
h(Q), for some constant Cx.

The nonstandard bilinear form N\{. , . ) • ^ 2 ( ^ ) x Sr
h(Q) -+ U1 is used,

^ W , (5.3)
}

where a(. , . ) is defined by (2.1 a)^and y > 0, is a spécifie constant. Nitsche [10]

shows that with the assumption (5.2) and y'chosen sufficiently large with

respect to Cu Ny
h is positive definite on Sr

h. The discrete solutions operator Th

,snow defined by N ^ , / , x , . (ƒ, z ) , (5.4)

for all x e Sr
h(Q\ for given ƒ G L2(Q).

5.2. Nearly zero boundary conditions

A second nonstandard method due to Nitsche [11] uses the spaces Sr
h(Q)

of 5.1, with the additional assumption of « nearly zero » boundary conditions

for all x ̂  SJ(Q), for some constant Co.
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The bilinear form JV£(y = 0) is used. With (5.2) and (5.5), and Co, C1 suffi-
ciently small, N% is positive definite on Sr

h(Q). The discrete solution operator,
Th, is defined by

Nfc(Tfc/,x) = (ƒ ,* ) , (5-6)
for ail x e SJi(O), for given ƒ G L2(Q).

5 . 3 . A Lagrange multiplier method of Babuska

In [2] Babuâka proposes the following method. Subspaces Sr
h(Q) c H1^)

are chosen satisfying

for ail V G HS(Q\ for some constant C, 1 < s < r.

In addition subspaces S» (3Q) c ƒƒ ̂ 50) are employed, satisfying

inf {ji*||X - xlliHtao) + Ji"*ll ^ " X II*-*») } < C[i" 11 A, 1 1 ^ ^ ,

for ail A, e Hs(dQ\ for - ^ s < r - - .

Also an inverse property is required,

11 X I liP(«i) < Cji"111 X I l««i) , X e S, (50).

Babuska shows that for the ratio h/\i sufficiently small, the form a(. , .)
is positive definite on the subspace

f f )
Sh = \ Ve SUD): VXda = 0, or ail Xe SM(3O)|.

The discrete solution operator Th in this case is defined by

) = {f,yO, (5.7)
for ail x G Sfts for given ƒ G L2(d£ï).

For proofs that the operators Th defined by (5.4), (5.6) and (5.7) satisfy
the properties (2.5)-(2.7) required in this work, see [1] and [6].

APPENDIX

The following is a tabulation of the polynonüals { fâXx) }„~ 0, for s = 1 , . . . , 5.
For each s ^ 1, a convenient choice of the parameter x{s) is as follows.

Examinating the details of Lemma 4 .1 , we have merely to consider the
behavior of the polynomials
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We first note that form (4.2)-(4.5),

and hence p£s) always has a real positive zero. In gênerai, for n ^ 1, if P^
has a real positive zero, we set Y^ to be the smallest positive zero otherwise
we set y„(s) = oo.

We then choose y{s) = min /„s), and xis) = [y ( s )] -1. The procedure is

clearly well defined and yields x(s) with 0<x ( s )<oo.
Now since

P%(y) = (- i ) v W - ) , n = i,..., s,

the above procedure is equivalent to a root finding procedure on the poly-
nomials {(3(

2
SJ }J = x viz. For each n ^ 1 if P(

2
S£ has a real positive zero, we set x^

to be the largest positive zero of P(
2
S* : otherwise we set x(

n
s) = 0. We now choose

xis) - max

Hence, with an efficient root finding algorithm, the parameters x{s) are
easily obtained from the polynomials { P(

2
S^ } s

n = 1 .

The tables are constructed simply from the formulae (4.2)-(4.5), and the
relation (4.18).

1, v = 2

- - i

s = 2, v = 4

1

24
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5 = 3, v = 6

m x )

PTW
3

PTW

PTM

« «

s = 4, v = 8

p(s'w

Q(4)/ „\

o (4 )/ „\

PI'W

PTW

PvW

P't'M

5 = 5, v = 10

6*5Vxl

B^^fx1

5

p(|>(x)

P<!>M

= 1
= -

1

~2 "

1

~ 24

1

- JA

" 2

1

Ï2Ö
1

= 72Ó~

= 1
« -

111 
II

1

~ 24

1

— 4 j

2

X

1 2

+ -x

Ç

- 2x2 + e

120

1

~ 72Ö~
1

2

lx> +
8

3

5040 ^ 40
1

40320

-j

= -

1

~ 2

1

1

1
X

80

7
C

5x2

5x

- 3 x 4

3 x 4 - x 6

x4

- 6 x 4

3x4 - 4x6

2

x - x + 4x

2 + 1 x4 2x6 + x8

4
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s = 5, v = 10

P't'M

WK*)

tfîKx)

P'I'W

24 2* +

1 5
= h -X

120 6

~ 720 ~ 24*
1 1

|5040 ' 24

1 1

40320 144
1

362880 '

1

10x4

1 - 10x4

+ 5x4 - 10xf

x2 5 x4 +

x2 + 5 x4

12

1 2 *
X

1008 12

3628800 8064 72

10xe

5x6

4 _

5

5

Ï2

5x8

X6 +

5x8

5 x6 + x8 - x10

REFERENCES

1 I BABUSKA, Survey Lectures on the Mathematical Foundations of the finite element
method, in « The Mathematical Foundations of the finite element method with
applications to partial differential équations », A K Azi2, ed , Academie Press,
New York, 1972

2 I BABUSKA, The finite element method with Lagrangian multipliers, Numer 'Math ,
20, 1973, p 179-192

3 G A BAKER, Error estimâtes for finite element methods for second order hyper-
bolw équations, S I A M , J Numer Anal, 13, n° 4, 1976, p 564-576

4 G A BAKER, Fimte element-Galerkin approximations for hyperbolie équations
with discontinuons coefficients, Tech Rep Math , École Polytechnique de Lau-
sanne, 1973

5 G A BAKER, J H BRAMBLE, V THOMEE, Single step Galerkin approximations for
parabolw équations Math Cornp 31, n° 140 1977 p 818-847

6 J H BRAMBLE, J OSBORN, Rate of convergence estimâtes for nonself-adjoint eigen-
value approximations, Math Comp, 27, n° 123, 1973, p 525-549

7 J H BRAMBLE, V THOMEE, Discrete time Galerkin methods for a par abolie boun-
dary value problem, Ann Mat Pura Appl, Série IV, 101, 1974, p 115-152

8 M CROUZEIX, Sur l'approximation des équations différentielles opérationnelles
linéaires par des methodes de Runge-Kutta, These, Univ de Pans VI, 1975

9 T DUPONT, L2-estimâtes for Galerkin methods for second order hyperbohe équa-
tions, S I A M , J Numer Anal, 10, n° 5, 1973, p 880-889

10 J NITSCHE, Uber ein Vanationspnnzip zur Losung von Dinchlet-Problemen bei
Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind, A B H
Math Sem, Univ Hamburg, 36, 1971, p 9-15

vol 13, n° 2, 1979



100 G A BAKER, J H BRAMBLE

11 J NÏTSCHE, On Dinchlet problems using subspaces with nearly zero boundary
conditions, in « The Mathematical Foundations of the Finite Element Method
with Applications to Partial Differential Equations », A K Aziz, ed , Academie
Press, New York, 1972, p 603-627

12 S P N0RSETT, One step methods of Hermite type for numencal intégration of
stijf Systems, B I T 14, 1974, p 63-77

13 R S VARGA, Matrix itérative analysis, Prentice Hall, Englewood Chffs, N J ,
1962

R A I R O Analyse numenque/Numerical Analysis


