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ON SPECTRAL APPROXIMATION
PART 2. ERROR ESTIMATES

FOR THE GALERKIN METHOD (*)

by Jean DESCLOUX (*), Nabil NASSIF (2) and Jacques RÂPPAZ (*)

Communiqué par P.-A. RAVIART

Abstract. — One considers an isolated eigenvalue A of finite multiplicity of an operator
A which is approximated by a Galerkin method. Using Osborn's technics, one dérives
several error estimâtes for X.

1. SITUATION AND RESULTS

In part 1 of this paper [3], we have been concernée! with the problem
of convergence in spectral approximation; since the theory we have deve-
lopped has received concrete applications for non compact operators only
in connection with the Galerkin method, we shall now restrict ourself to
this case.

Let X be a complex Banach space of norm 11 11 and { Xh } be a séquence
of finite dimensional subspaces of X. One gives two continuous sesquilinear
forms a and b on X and one supposes a coercive. Then, by Lax-Milgram,
one can define the continuous operators A :X^>X and Ah : Xh—*Xh by

a(Au, v) = b(u, v)> Vw, i?eX? a{Ahuy v) = b(u, v), V

All along this paper we shall suppose that the two following conditions are
satisfied (see [3]):

PI : l im|j(^-^) l^ll =0; P2: VxeZ, lim inf | |x-xA | | = 0.
h-*O h^O xheXh

Let X e C be an isolated eigenvalue of A of finite algebraic multiplicity m ;
since a is coercive X ^ 0 and there exists a closed dise À of center X and
boundary F such that 0 £ À and A na (A) = {X} where a {A) dénotes
the spectrum of A. Let \ilh, . . . , \^m^fh be the eigenvalues of Ah, repeated
following their algebraic multiplicities and contained in À. In [3], section 2,

(*) Manuscrit reçu le 10 juin 1977V
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(2) Department of Mathematics, American University of Beirut, Liban.
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114 J. DESCLOUX, N. NASSIF, J. RAPPAZ

we have proved:

a) m(h) =m for h small enough;

b) lim \xih = X, i = 1, 2, . . . , m.
fc->0

The purpose of this part 2 of our paper is to give estimâtes of X by the
\iih'$. In fact, we shall adapt to the situation described above Osborn's
method [5]; note that, independently of the fact that Ah is a Galerkin
approximation, we have simplified the présentation of Osborn's main
argument and strengthened his results. See also Grigorieff [4],

At this point, we recall some standard notations. For an operator £>,
Rz (D) = (z—Z))"1 is the résolvent operator. Let Y and Z be closed
subspaces of X; then for xe X9

d(x,Z)= inf\\x-z\\, StZZ)^ sup S(y, Z)
zeZ yeY

and

) = max(5(Y,Z),5(Z, Y)).

Let us also open a short parenthesis on duality. Let J5f* be the adjoint
space of X, i. e. the set of antilinear continuous forms on X. By Lax-Milgram,
the operator C : X * —• X defined by the relation a (v, C cp) = q> (u), V v e X,
( p e l * , is an isomorphism between X* and X which allows to identify
these two spaces. With this identification if Z) : X—>X is a bounded linear
operator, its adjoint D* :X^>X will be characterized by the relation
a (Du, v) = a (w, D* v), V w, v e X; one vérifies also immediately the relation

II^NIKIMIc-MUMI.
We need, for the following, to introducé some further operators. Uh : X—> X

is the projector with range Xh defined by the relation a(Hhu — M, V) = 0,
V Ü G 4 One has Ah = UkA \Xh and we set Bh = TLhATLh : X~±X; exept

for zero, Bh has the same spectrum as Ah and the same corresponding invariant
subspaces. E = (2 II i )~M Rz(A)dz is the spectral projector of ̂ 4 relative

J r
 f

to X and, for /* small enough, Fh = (2 II i ) M J?z (£,,) Jz is the spectral

projector of Bh relative to \ilh, . . . , )imh. Now consider the adjoints of these
operators as defined above. A* has the isolated eigenvalue X of algebraic
multiplicity m; II* will be the projector with range Xh satisfying the relation
a{v, H*u — u) = 0 ,VüeI f t ; E* and F£ will be the spectral projectors of
A* and B* — II* A* II* associated respectively to X and to the set \ilhi . . . , \imh;

R.A.Ï.R.O. Analyse numérique/Numerical Analysis
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they will satisfy the relations

a f_Kx01*)dz and Fj=(2nO" 1 \_R2(Bl)dz

where Y is the conjugate circle of Y (positively oriented).
In applications E{X)%aà E* (X), the m-dimensional invariant subspaces

of A and A* corresponding to X and X9 will be often composed of smooth
functions so that it is reasonable to introducé the quantities

Yft = Ô(£(X), Xh\ y* = 8 (£*(*), Xh).

We can now state the results.

THEOREM 1 : There exists a constant c, independent of h such that

î \ E(X)) té cyh; S(F*(X), £*(*)) g cy*.

In section 2, we shall show that Fh \EW defînes for h small enough, a
bijection between E(X) and Fh(X); let Ah be this bijection; A = A \E(X)

and Bh = A'1 BhAh will be considered as operators in E(X); A has the
eigenvalue X of algebraic multiplicity m and Bh has the eigenvalues

THEOREM 2 : TTzere exw/^ a constant c, independent of h such that

By the choice of a basis in E(X), theorem 2 reduces our original task
to a pure matricial problem. Let ƒ be a holomorphic function defined in a
neighborhood of X; writting/(^) a n d / ( ^ ) by the mean of Dunford intégrais,
one vérifies immediately that

\\ftf)-f(Bà\\Em<c\\Â-Bk\\Em

where c dépends on ƒ but not on h; using the classical properties of traces
and déterminants, one obtains theorem 3 a, b; theorem 3 c, d is a direct
application of results quoted in [7], pp. 80-81; hère a is the ascent of the
eigenvalue X of A, p is the number of Jordan blocs of the canonical

y\.

form of A.
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THEOREM 3 : There exists a constant c, independent of h such that for h
smal! enough:

<0 max |X-^|g
i=l . . .m

d) min \X-iiih\^c(yhytrm.
i~l...m

REMARKS : 1) In his original work, in a différence context, Osborn [5]
has obtained theorem 3 a for ƒ (z) = z and theorem 3 c; in another context
also Chatelin [1] proves, theorem 3 a for f(z) = z.

2) For ƒ (z) = 1/z, theorem 3 a gives an estimate of l/X by the arithmetic
mean of the l/\iih's; the result has been already obtained by [2]; we are
indebted to Chatelin who showed us that it can also be deduced by Osborn's
method.

In order to illustrate this theorem, we consider the example developped
in section 4 of part 1 of this paper [3] ; one can prove by Rappaz' method
of élimination used in [6] the existence of an infinité number of isolated
eigenvalues of finite multiplicities; by supposing the coefficients a, P, . . .
sufficiently smooth, one vérifies that the corresponding eigensubspaces are
subsets of H 2 x (H1)2; consequently yh = O (h), y* = O (h) and the estimâtes
of theorem 3 a, b are of order h2.

We conclude this section by stating a very elementary result for the self-
adjoint case. We suppose that the forms a and b are hermitian. Because
of its coercivity, a is a scalar product for which X is a Hubert space with
norm || x ||f = a(x, x); then A9 Bh and Tlh become hermitian. Let v be
an eigenvalue of A9 which is not supposed isolated or of finite multiplicity,
and G be the corresponding eigensubspace. For the distance S (v, a (Bh))
from v to the spectrum a (Bh) of Bh> one gets the estimate

ô(v9a(Bh))= inf \\(Bh-v)y\\a^ inf
X X

inf ||(i4-v)y||.= inf \\(A-v)(y-x)
yeXh yX

| y | | = i U
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i. e., since the norms ||.| | and ||.[|a are equivalent:

ô(v, o(Bh)) g c inf 8(x, Xh), c independent of h and v. (1)
xeG

REMARKS: 1) We have obtained the estimate (1) without supposing PI
or P2.

2) Examples show that it is not possible to replace the right member of (1),
by c{ inf

xeG
1*11 = 1

2. PROOFS

In this section we prove theorem 1 and 2. We use the définitions and nota-
tions of section 1 and we suppose hypotheses PI and P2. c will dénote
a "generic" constant.

We first recall a well-known resuit. Since a is continuous and coercive,
the projectors TLh are bounded uniformly with respect to h and there exists
a constant c such that [| x—IIh x || :g c S (x, Xh), V x e X; the n^'s possess
the same properties.

Lemma 1 of section 2 of [3] shows that PI implies the inequality
sup || Rz(Ah) x || rg c, V z e F for h small enough, c independent of h.
xeXh

II*II = I
We extend this resuit to Bh and i?*.

LEMMA 1 : There exists h0 > 0 and c such that

||Kz(i?ft)|jgc, h<h0, zeT
and

\\Rs(B*)\\£c9 h<h0, zeF.

Proof: Since R~ (B*) = (Rz (5ft))* we need to prove only the first statement;

since Bh is compact it suffices to verify that || (z—Bh) x\\ ^ c | [ x | | , V xe X,

z e T. Taking in account the fact that 0 £ T one has

We note that we shall not use any more PI explicitely. Consequently, in
the proofs of lemma 3 and theorem 1, the statements for the adjoints operators
are obtained in the same way as for the direct operators.

We omit the proof of the foliowing trivial :
LEMMA 2 : Let Y and Z be two subspaces ofX with the same finit e dimension;

1 et P: Y-> Zbe a linear operator such that \\ Py-y \\ g 0.5 || y ||, V^ e Y,

vol. 12, n° 2,1978
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Then P is bijective,

| |P-z | |^2! |Z | | , VzeZ

and

sup | | p - 1 z -z | | g2 sup
zeZ yeY

LEMMA 3:
|j(£-F f t)

\\(E*-F*)

Proof: For h small enough, by lemma 1, one has

\\(E-Fh) |Bm||^(2nr1Jr||jR,(BA)|

^c\\(A-Bh) \Em\\;

\\(A-Bh) \Em\\^\\(I-Uh)A \E(X)\\ + \\nhA(I-nh) \Em\

Proof of theorem 1; Lemma 3 implies that &(E(X), Fh(X)) ^ cyh. Set,
as in Section 1, Ah = Fh \E(X) : E(X) ->Fh(X); for h small enough E{X)
and Fh (X) have the same dimension m; on the other side P2 implies lim yh = 0;

by lemma 2, A^1 exists for h small enough and is uniformly bounded
with respect to h; furthermore sup || A "̂1 x — x || ^ c yh9 i. e*

e F C )h C )

Proof of theorem 2: Let iSft = A^1 Fh—I : X—• X; Shis uniformly bounded
with respect to h (see proof of theorem 1); from the identity

A-Bh)x, xeE(X),

one obtains for xeE(X), y e E* (X), since Fh Sh = 0,

a((A-Bh)x, y) = a((A-Bh)x, y) + a(Sk(A-Bh)x, (I~F*)y); (2)

sup a((Â-Bh)x, y)
x<=E(X),yeX

l l*ll = l l y | | = i

sup a((A-BJx9y); (3)
xeE(X),yeE*(X)
11*11-11*11 = 1

R.A.I.R.O. Analyse numérique/Numerical Analysis
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for xeE(X), yeE*(X), || x |[ = || y || = 1, one has (using lemma 3):

laiS^A-BOx^I-F^yy^cWiA-B^xW.Wil-F^yW^cy.yt; (4)

a((A-Bh)x, y) - a ((1-1104 *, (I-U*)y)
+ a((I-nh)x,(I-Il*)A*y)

\ \ (5)

theorem 2 follows from (2), (3), (4) and (5). •
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