RAIRO. ANALYSE NUMÉRIQUE

FRANCESCO SCARPINI MARIA AGOSTINA VIVALDI Error estimates for the approximation of some unilateral problems

RAIRO. Analyse numérique, tome 11, nº 2 (1977), p. 197-208

<http://www.numdam.org/item?id=M2AN_1977__11_2_197_0>

© AFCET, 1977, tous droits réservés.

L'accès aux archives de la revue « RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ERROR ESTIMATES FOR THE APPROXIMATION OF SOME UNILATERAL PROBLEMS (*) (1)

by Francesco SCARPINI and Maria Agostina VIVALDI (²)

Communique par P A RAVIART

Abstract – An error estimate for the affine finite element approximation of some unilateral problems is given

1. INTRODUCTION

In the mechanics of Fluids through semipermeable boundary the following problem is studied .

$$-\Delta u = f$$
 in Ω ; $u \ge \psi$, $\frac{\partial u}{\partial n} \ge 0$, $(u - \psi)\frac{\partial u}{\partial n} = 0$ on Γ (1)

where Γ is a thin membrane around the space Ω filled by the fluid : semipermeable means that the fluid is allowed to enter but not to escape.

 Δ denotes the Laplace operator, u the pressure of the fluid in its stable condition, f the amount of the fluid that has been put in, ψ denotes the external fluid pressure on Γ , $\frac{\partial}{\partial n}$ the outer normal derivative on Γ

(1) can be used also to sketch some problems in thermo-dynamics or electric dynamics

A system such as (1) is known in the literature as a complementarity system and can be solved when some compatibility conditions are imposed on f(see [8])

If the internal pressure u is greater than the external one ψ then the semipermeable membrane holds the fluid and the fluid cannot escape $\left(so\frac{\partial u}{\partial n}=0\right)$.

If ψ is greater or equal than u, the external fluid enters through $\Gamma\left(\frac{\partial u}{\partial n} \ge 0\right)$ until there is $u = \psi$; in theory there is no $u < \psi$.

 ^(*) This paper has been partially supported by GNAFA-C N R
 (¹) Manuscrit reçu le 10 decembre 1975
 (²) Istituto Matematico Universita di Roma

The membrane could be devided into two parts Γ_1 and Γ_2

on Γ_1 we have $u = \psi$ (Dirichlet condition),

on Γ_2 we have $\frac{\partial u}{\partial n} = 0$ (Neumann condition).

but we look at (1) as a free boundary problem because we do not know Γ_1 or Γ_2 .

We shall study some variational inequalities (with coerciveness assumption) (cfr [23]), we shall consider an approximation using the triangular affine elements: the solutions of the corresponding discrete complementarity systems are supposed known.

Our purpose is to estimate the distance between the exact solution u and the discrete one u_h .

2. THE BASIC NOTATION AND TERMINOLOGY

 Ω denotes a bounded, open set of \mathbb{R}^2 , Γ denotes the boundary of Ω and $\overline{\Omega}$ the closure of Ω so that $\overline{\Omega} = \Omega \cup \Gamma$: Ω is supposed with "not too bad" a boundary.

 $C^{k}(\overline{\Omega})$, (k = 0, 1, 2, ...) is a Banach space, the elements of which are functions that are continuous in $\overline{\Omega}$ and have continuous derivatives in $\overline{\Omega}$ of the first k order: the norm is defined by:

$$\|u\|_{C^{k}(\overline{\Omega})} = \sum_{j=0}^{k} \sum_{|\alpha|=j} \max_{\overline{\Omega}} |D^{\alpha}u|$$

(if $k = +\infty$ the functions are infinitely differentiable)

 $\mathscr{D}(\Omega)$ is the space of the functions of $C^{\infty}(\overline{\Omega})$ which are zero in a neighbourhood of $\partial \Omega$, and we put on it Schwartz's topology, $L^{p}(\Omega)$, $(1 denotes the Banach space of all functions on <math>\Omega$ that are measurable and *p*-summable in Ω . the norm in this space is defined by

$$\|u\|_{L^p(\Omega)} = \left(\int_{\Omega} |u|^p \, dx\right)^{1/p}$$

or if $p = +\infty$ a e. bounded in Ω , (the elements $L^{p}(\Omega)$ are the class of equivalent functions on Ω).

 $W^{k,p}(\Omega)$, $(k \in \mathbb{N}, 1 denotes the Banach space of all elements of <math>L^{p}(\Omega)$ that have generalized derivatives of all kinds of the first k orders that are p-summable in Ω : the norm is defined by

$$\|u\|_{W^{k}}, p_{(\Omega)} = \left(\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L}^{p} p_{(\Omega)}\right)^{1/p} , \quad \alpha = (\alpha_{1}, \alpha_{2}) : |\alpha| = \sum_{i=1}^{2} \alpha_{i}$$

R A I R O Analyse Numerique/Numerical Analysis

 $W_0^{k,p}(\Omega)$ denotes the closure in the space $W^{k,p}(\Omega)$ of $\mathcal{D}(\Omega)$; for further details and for the spaces $W^{s,p}(\Omega)$, with s real, see e.g. [15] and [20].

We shall use the following notations

$$H^{k}(\Omega) = W^{k,2}(\Omega) \quad ; \quad H^{k}_{0}(\Omega) = W^{k,2}_{0}(\Omega)$$
$$\|v\|_{k,\Omega} = \|v\|_{W^{k,2}(\Omega)} \qquad |v|_{k,\Omega} = \left(\sum_{|\alpha|=k} \|D^{\alpha}v\|_{0,\Omega}^{2}\right)^{1/2}.$$

3. VARIATIONAL FORMULATION OF THE PROBLEM

Let us look at the following form

$$a(u,v) = \int_{\Omega} \left(\sum_{i,j=1}^{2} a_{ij}(x) \frac{\partial u}{\partial x_{i}} \cdot \frac{\partial v}{\partial x_{j}} + a_{0}(x)uv \right) dx$$

where $a_{ij}(x) \in C^1(\overline{\Omega})$, and $a_0(x) \in L^{\infty}(\Omega)$ let us suppose :

$$\sum_{i,j=1}^{2} a_{ij}(x)\xi_i\xi_j \ge \alpha_0 |\xi|^2 \quad \forall \xi \in \mathbf{R}^2 \quad , \quad \alpha_0 > 0 \qquad \text{and} \qquad a_0(x) \ge c > 0$$

so that a(.,.) is a bilinear, continuous, coercive form on $H^1(\Omega) \times H^1(\Omega)$ i. e. $a(u, u) \ge \alpha ||u||_{1,\Omega}^2$;

 $|a(u, v)| \leq M ||u||_{1,\Omega} \cdot ||v||_{1,\Omega}, \alpha, M \in \mathbf{R}; \quad \alpha > 0, M > 0$

We shall consider the problem

$$u \in K: a(u, v - u) \ge \langle f, v - u \rangle \quad \forall v \in K$$
(2)

where K is a convex set :

$$K = \{ v \mid v \in H^1(\Omega) : v \ge \Psi \text{ on } \Gamma \}$$

 \langle , \rangle denotes the pairing between $(H^1(\Omega))'$ and $H^1(\Omega)$, $f \in L^2(\Omega)$, $\Psi \in H^2(\Omega)$.

In these conditions (see e.g. [3], [14]) there is one and only one solution u of the problem (2) and $u \in H^2(\Omega)$.

In what follows we shall use the notations :

$$Lu = -\sum_{i,j=1}^{2} \frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{j}} \right) + a_{0}(x)u, \qquad \frac{\partial u}{\partial v} = \sum_{i,j=1}^{2} a_{ij}(x) \frac{\partial u}{\partial x_{i}} \cos(n, x_{j})$$

where *n* is the outer normal to Γ .

Let us recall (see [14]) the problem (2) is equivalent to the following system:

$$\begin{cases}
Lu = f & \text{in } \Omega \\
u \ge \psi & \text{on } \Gamma \\
\frac{\partial u}{\partial v} \ge 0 & \text{on } \Gamma \\
(u - \psi)\frac{\partial u}{\partial v} = \text{on } \Gamma
\end{cases}$$
(3)

REMARK 3.1.

If $a_{ij} = a_{ji}$ the problem (2) can be formulated as follows:

find $u \in K$ such that

$$J(u) = \inf_{v \in K} J(v)$$

where $J(v) = \frac{1}{2}a(v, v) - \langle f, v \rangle$ is a weakly lower semicontinuous, strictly convex, differentiable functional.

4. A DISCRETIZATION OF THI PROBLEM BY THE FINITE ELEMENT METHOD

We shall sketch here an approximation of problem (2) by means of triangular affine elements.

We shall suppose that Ω is a bounded convex open subset of \mathbb{R}^2 , with a smooth boundary Γ (e. g. C^2).

Given h, 0 < h < 1, we first inscribe a polygon Ω_h in Ω whose vertices belong to Γ and whose sides have a length which does not exceed h.

We then decompose Ω_h into triangles in such a way that :

$$0 < l \leq h$$
, $l'/l'' \leq \beta$, $0 < \vartheta_0 < \vartheta \leq \frac{\pi}{2}$

where β and $\vartheta_0 < \frac{\pi}{2}$ are given positive constants *l*, *l'*, *l''* are lenghts of arbitrary sides of the triangulation, ϑ an arbitrary angle of our triangles.

(As always, the triangulation is not permitted to place a vertex of one triangle along the edge of another, each pair of triangles shares a vertex, a whole edge, or nothing.)

We call "regular" (see [2], [11]) such a triangulation.

R.A.I.R.O. Analyse Numérique/Numerical Analysis

200

We shall denote by $I_0 = \{1, \ldots, N_0\}$ the set of all indices *i* associated with the internal nodes x_i of the triangulation $(x_i \in \Omega)$ and we shall denote by $I_1 = \{N_0 + 1, \ldots, N\}$ the set of all indices *i* associated with the boundary nodes of the triangulation $(x_i \in \partial \Omega)$: and let be $I = I_0 \cup I_1$.

We number the vertices in such a way that x_{N_0+1}, \ldots, x_N are the boundary vertices, numbered consecutively counterclockwise around Γ : the curved side (lying on Γ) with end points x_i, x_{i+1} is Γ_i (for sake of notation we shall make the identification $x_{N+1} = x_{N_0+1}$) we shall denote by Σ_i the zone between the curved side Γ_i and the right side with endpoints x_i , x_{i+1} , and by T_i the triangle corresponding to the $[x_{i+1}, x_i]$ side: finally we shall call *curved elements* the following subdomains:

$$T_i \cup \Sigma_i$$
, $i \in I_1$.

For each $i \in I$, we shall consider the continuous function

$$\varphi_i^h(x)$$
 , $x \in \Omega$

which is affine in each triangular or curved (see the above position) element of the decomposition, is = 1 at x_i and = 0 in all $x_j \neq x_i$, $j \in I$.

We shall now consider the piecewise affine function $v_h(x)$ defined by

$$v_h(x) = \sum_{i \in I} v_i^h \varphi_i^h(x) \quad , \quad \{ v_i^h \}_{i \in I} \in \mathbf{R}^N$$
(4)

and the space :

$$H_h^1(\Omega) = \left\{ v_h : v_h = \sum_{i \in I} v_i^h \varphi_i^h(x) \right\}$$

(trivially $H_h^1(\Omega)$ is contained in the space $H^1(\Omega)$).

In [2] it was shown that :

$$||u - u_I||_{r,\Omega_h} \le c h^{2-r} |u|_{2,\Omega_h}$$
, $r = 0,1$, $\forall u \in H^2(\Omega)$

where $u_I(x)$ is the piecewise affine function which interpolates u at every vertex

i.e.
$$u_I(x) = \sum_{i \in I} u(x_i) \phi_i^h(x)$$

but we can modify the process of the quoted paper and using the regularity conditions of the decomposition and a continuous extension theorem in the seminorms (see [26]) we can obtain :

$$\|u - u_I\|_{r,\Omega} \le c h^{2-r} |u|_{2,\Omega} , \quad r = 0,1.$$
 (6)

We shall consider the convex

$$K_{h} = \left\{ v_{h}(x) : v_{h} \in H_{h}^{1}(\Omega) / v_{h}(x_{i}) \geq \psi(x_{i}) \,\forall i \in I_{1} \right\}$$

The approximate problem is obtained by replacing K with K_h in problem (2)

$$u_h \in K_h : a(u_h, u_h - v_h) \le \langle f, u_h - v_h \rangle \qquad \forall v_h \in K_h$$
(7)

Let us write the discrete problem by replacing the expression (4) of $u_h(x)$ that is:

$$u_h(x) = \sum_{i \in I} U_i \varphi_i^h(x)$$
(8)

PROPOSITION 4.1. The problem (7) is equivalent to the following discrete system.

$$\begin{cases}
M_{I_0} = A_{I_0I}U_I - b_{I_0} = 0 \\
U_{I_1} - \Psi_{I_1} \ge 0 \\
M_{I_1} = A_{I_1I}U_I - b_{I_1} \ge 0 \\
M_{I_1}(U_{I_1} - \Psi_{I_1}) = 0
\end{cases}$$
(9)

where $A = A_{II} = \{ a_{ij} \}_{i,j\in I}, a_{ij} = a(\phi_j^h, \phi_i^h); b_I = \{ b_i \}_{i\in I}$ $b_i = (f, \phi_i^h); \quad \Psi_{I_1} = \{ \Psi_i \}_{i\in I_1} , \quad \Psi_i = \Psi(x_i)$

PROOF. By choosing $v_h = u_h \pm \varphi_i^h$ for every $i \in I_0$ we find the first equation i_h) $M_i = \sum_{j \in I} a_{ij} U_j - b_i = 0$ $i \in I_0$.

The second condition in (9) is the definition of K_h

 $\mathrm{ii}_{h}) \qquad \qquad U_{i} \geq \Psi_{i} \quad i \in I_{1}$

By putting $v_h = u_h + \varphi_i^h \ i \in I_1$ we have iii_h) $M_i = \sum_{j \in I} a_{ij} U_j - b_i \ge 0$ $i \in I_1$.

The last condition in (9) is obtained by choosing

$$v_h(x_i) = \varepsilon u_h(x_i) \quad i \in I_0$$

$$v_h(x_i) = \Psi(x_i) + \varepsilon (u_h - \Psi)(x_i) \quad i \in I_1$$

in fact i_h) gives

$$(\varepsilon - 1) \sum_{i \in I_1} (U_i - \Psi_i) \left\{ \sum_{j \in I} a_{ij} U_j - b_i \right\} \ge 0$$

and with choices: $\varepsilon > 1$, $1 > \varepsilon > 0$ due to ii_h and iii_h we find:

$$M_{I_1}(U_{I_1} - \Psi_{I_1}) = 0.$$

It is easy to check, in turn, that if we take the coefficients U_j of the function (8) to be the solution of (9) then $u_h(x)$ is the solution of (7).

R.A.I.R.O. Analyse Numérique/Numerical Analysis

202

REMARK 4.1. The matrix A belongs to the class (P) that is to say, all principal minors $A_{JJ} = (a_{h,k})_{h,k\in J}$, $J \subset I$ have a positive determinant; therefore the existence and uniqueness of the solution U_I of (9) is a well known result; if A belongs, also, to the class (Z), that is $a_{ij} \leq 0$ $(i \neq j)$ (*) then a monotone algorithm for solving system (9) can be found, (see e. g. [12], [17], [22] for other unilateral problems).

5. ERROR ESTIMATES

In order to estimate the distance between the solutions u of (2) and u_h of (7) we shall follow the procedure described in [9] for another unilateral problem; of course our problem demands some modifications of the Falk's method for the "inability" of piecewise polynomials to satisfy the conditions on a curved boundary.

Our main result is this: the error is of order $h^{\frac{3}{4}}$ in the energy norm :

THEOREM I. We have

$$\|u - u_h\|_{1,\Omega} \le Ch^{\frac{3}{4}} (**) \tag{10}$$

Proof. Let us now write the inequalities (2) and (7) by choosing $v = \Psi$ in (2) and $v = u_I$ in (7)

$$a(u, u - \Psi) \leq \langle f, u - \Psi \rangle$$

$$a(u_h, u_h - u_I) \leq \langle f, u_h - u_I \rangle$$

We find

$$a(u, u) + a(u_h, u_h) \le \langle f, u - u_I + u_h - \psi \rangle + a(u, \psi) + a(u_h, u_I)$$

and, by subtracting $a(u, u_h) + a(u_h, u)$, also
$$a(u - u_h, u - u_h) \le \langle f, u - u_I + u_h - \psi \rangle - a(u, u - u_I + u_h - \psi) + a(u - u_h, u - u_I).$$

Let us write the inequality using Green's formula $a(u - u_h, u - u_h) \leq (f - Lu, u - u_I + u_h - \psi) + a(u - u_h, u - u_I) - \int_{\Gamma} (u - u_I + u_h - \psi) \frac{\partial u}{\partial \nu} d\Gamma$

vol 11. nº 2, 1977

^(*) This is true, for example, for $Lu = -\Delta u + a_0 u$.

^(**) In the sequel C will denote a generic constant not necessarily the same in any two places.

and by the first equation of the system (3)

$$a(u-u_h, u-u_h) \leq a(u-u_h, u-u_I) - \int_{\Gamma} (u-u_I+u_h-\psi) \frac{\partial u}{\partial \nu} d\Gamma \quad (11)$$

We shall split the last term into two integrals i. e.

$$-\int_{\Gamma} (u_h - \psi_I) \frac{\partial u}{\partial \nu} d\Gamma - \int_{\Gamma} ((u - \psi) - (u - \psi)_I) \frac{\partial u}{\partial \nu} d\Gamma$$

The estimation of $||u - u_h||_{1,\Omega}$ is therefore reduced to study the convergence of the boundary integrals.

We begin by remarking that $g = u_h - \psi_I$ is nonnegative at the boundary nodes, if also $u_h - \psi_I \ge 0$ on Γ we could eliminate the integral $-\int_{\Gamma} \frac{\partial u}{\partial v} (u_h - \psi_I)$ and so the inequality would increase (cf. systems (3) (9));

if this is not the case. let us denote by $\widetilde{\Gamma}$ the subset of Γ in which.

and let us split $\tilde{\Gamma}$ into a finite number of curved sides $\tilde{\Gamma}_i$ with endpoints z_i, z_{i+1} such that:

$$\widetilde{\Gamma} = \bigcup_{i \in I_1} \widetilde{\Gamma}_i$$
, $\widetilde{\Gamma}_i \subset \Gamma_i$, $g(z_i) = g(z_{i+1}) = 0$ ⁽¹⁾.

We can now prove the following:

PROPOSITION 5.1. : We have :

$$-\int_{\Gamma} g \frac{\partial u}{\partial \nu} d\Gamma \leq \operatorname{Ch}^{\frac{3}{2}} \| u \|_{2,\Omega}$$
(12)

Proof. By the third inequality of (3) we find :

$$-\int_{\Gamma} g \frac{\partial u}{\partial \nu} d\Gamma \leq -\int_{\widetilde{\Gamma}} g \frac{\partial u}{\partial \nu} d\Gamma \leq \|g\|_{0,\widetilde{\Gamma}} \left\| \frac{\partial u}{\partial \nu} \right\|_{\frac{1}{2},\widetilde{\Gamma}}$$

We may increase the inequality by replacing $\left\| \frac{\partial u}{\partial v} \right\|_{\frac{1}{2},\widetilde{\Gamma}}$ with $\left\| \frac{\partial u}{\partial v} \right\|_{\frac{1}{2},\Gamma}$ and

by a trace theorem (see e. g. [15] [20]) with $C \|u\|_{2,\Omega}$. We denote by z the intersection between the side $[z_i, z_{i+1}]$ and its normal from x; by $\tilde{\Sigma}_i$ the zone between the curved side $\tilde{\Gamma}_i$ and the right side $[z_{i+1}, z_i]$ (see the figure 1)

R A I R.O. Analyse Numérique/Numerical Analysis

204

⁽¹⁾ $\tilde{\Gamma}_i$ may be empty for some *i*.

Figure 1.

The following inequalities can be obtained using Schwartz inequality and the smoothness of the boundary (cfr. [26])

$$\begin{cases}
\int_{\widetilde{\Gamma}_{i}} |g(x)|^{2} d\Gamma \leq \int_{\widetilde{\Gamma}_{i}} \left| \int_{z}^{x} \left| \frac{\partial g}{\partial n} \right| dn \right|^{2} d\Gamma \\
\leq \int_{\widetilde{\Gamma}_{i}} |z - x| \int_{z}^{x} \left| \frac{\partial g}{\partial n} \right|^{2} dn \, d\Gamma \leq \operatorname{Ch}^{2} |g|_{1, \widetilde{\Sigma}_{i}}^{2} \quad (13)
\end{cases}$$

finally we apply Berger's ideas (see [26]) for piecewise polynomial functions : i. e.

$$\int_{\widetilde{\Sigma}_i} |D^{\alpha}g|^2 dx \leq \operatorname{Ch} \int_{T_i} |D^{\alpha}g|^2 dx \qquad \forall |\alpha| \leq 1$$

and combining the relations obtained above we have (12). Now we return to (11) and we prove the :

PROPOSITION 5.2. We have

$$-\int_{\Gamma} ((u-\psi)-(u-\psi)_I)\frac{\partial u}{\partial v}\,d\Gamma \leq \mathrm{Ch}^{\frac{3}{2}} \tag{14}$$

Proof.

Let us write (see proposition 5.1 and figure 2) for $v = (u - \psi) - (u - \psi)_I$

$$-\int_{\Gamma} v \frac{\partial u}{\partial v} d\Gamma \leq C \|u\|_{2,\Omega} \|v\|_{0,\Gamma} \quad \text{and} \quad \|v\|_{0,\Gamma}^{2} = \sum_{1=N_{0}+1}^{N-1} \|v\|_{0,\Gamma_{1}}^{2}$$

$$X_{i+1} \qquad Z \qquad X_{i}$$
Figure 2.

it is now easy to prove the following inequalities

$$\begin{cases} \int_{\Gamma_{i}} |v(\mathbf{x})|^{2} d\Gamma = \int_{\Gamma_{i}} \left[\int_{x_{i}}^{z} \frac{\partial v}{\partial \lambda} d\lambda + \int_{z}^{x} \frac{\partial v}{\partial n} dn \right]^{2} d\Gamma \\ \leq \int_{\Gamma_{i}}^{2} \left[|z - x_{i}| \int_{x_{i}}^{x_{i+1}} \left| \frac{\partial v}{\partial \lambda} \right|^{2} d\lambda + 2 |x - z| \int_{z}^{x} |\operatorname{grad} v|^{2} dn \right] d\Gamma. \tag{15}$$

We shall apply Bramble and Zlamal's method (cfr. [2]) and use the trace theorems (see [20]) and the regularity assumptions, to yield (14).

We are finally ready to prove our theorem I (*): we shall replace in (11) the results of the propositions 5.1 and 5.2 and use the coerciviness and continuity assumption.

6. REMARKS

Zlámal introduced in the finite element method the "curved elements" (see e. g. [29]), by introducing Zlámal curved elements to our problem, we find again the same rate of convergence for the approximation error.

Namely we shall consider a triangulation of the given domain Ω into triangles completed along the boundary Γ by curved elements, so that the union of their closures is $\overline{\Omega}$ (the usual regularity conditions are supposed satisfied): we construct a finite-dimensional subspace (V_h) of trial functions belonging to $H^1(\Omega)$:

$$v_h(x^1, x^2) = r_h(\xi(x^1, x^2), \eta(x^1, x^2))$$
(16)

When $\xi(x^1, x^2)$, $\eta(x^1, x^2)$ is the inverse mapping of

$$\begin{cases} x^{1} = x^{1}(\xi, \eta) \\ x^{2} = x^{2}(\xi, \eta) \end{cases}$$
(17)

which maps the unit triangle T_1 with vertices $R_1 \equiv (0, 0), R_2 = (1, 0), R_3 = (0, 1)$ in the ξ - η -plane one-to-one into the triangle T (which may be a curved one) with vertices $(x_i^1, x_i^2), (x_{i+1}^1, x_{i+1}^2), (x_j^1, x_j^2)$ (see [29]) and $r(\xi, \eta)$

(*) In order to obtain the optimal error estimate :

i.e. $\|u - u_h\|_{1,\Omega} \leq ch$

we should need the following results

$$(+) \|g\|_{-\frac{1}{2}, \widetilde{\Gamma}} \le ch^{1/2} \|g\|_{0, \widetilde{\Gamma}} \quad \text{where} \quad g = u_h - \Psi_I$$

$$(++) \|v\|_{-\frac{1}{2}, \widetilde{\Gamma}} \le ch^{1/2} \|v\|_{0, \widetilde{\Gamma}} \quad \text{where} \quad v = (u - \Psi) - (u - \Psi)_I$$

which at the moment we are not able to prove.

R.A.I.R.O. Analyse Numérique/Numerical Analysis

is an affine function in T_1 , We shall also use the Zlámal theorem 2 to estimate the difference $u - \tilde{u}_I$ where \tilde{u}_I is the "interpolate of u" i. e.: the function from V_h such that

$$\widetilde{u}_I(x_i) = u(x_i) \qquad \forall i \in I.$$

We shall choose \tilde{K}_h as the convex set of the all function of V_h such that :

$$v_h(x_i) \ge \Psi(x_i) \qquad \forall i \in I_1$$

(and then also $v_h(x) \ge \psi'(x) \ \forall x \in \Gamma$).

 \tilde{u}_h denotes the solution of the discrete problem (7) corresponding to the convex set \tilde{K}_h . We can now repeat our theorem I replacing u_h with \tilde{u}_h to obtain the error bounds

$$\|u - \widetilde{u}_h\|_1 \le Ch^{\frac{3}{4}}.$$

REFERENCES

- 1. A. BERGER, R. SCOTT, G. STRANG, Approximate boundary conditions in the finite element method, Symposium on Numer. Anal. I.N.A.M. Roma. Symposia Mathematica Academic Press, 1973.
- J. H. BRAMBLE, M. ZLÁMAL, Triangular elements in the finite element method, Math. Comp., Vol. 24, 1970, pp. 809-820.
- 3. H. BREZIS, Problèmes unilatéraux, (Thèse), J. Math. Pures Appl., 1972.
- 4. R. W. COTTLE, R. S. SACHER, On the solution of large, structured linear complementarity problems : I, Tecn. Rep. 73-4 Stanford Univ. California.
- 5. R. W. COTTLE, G. H. GOLUB, R. S. SACHER, On the solution of large, structured linear complementarity problems : III, Tecn. Rep. 74-7 Stanford Univ. California.
- 6. R. W. COTTLE, *Complementarity and variational problems*, Tecn. Rep. 74-6 Stanford Univ. California.
- 7. R. W. COTTLE, Computational experience with large-scale linear complementarity problems, Tecn. Rep. 7-13 Stanford Univ. California.
- 8. G. DUVAUT, J. L. LIONS, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
- 9. R. S. FALK, Error estimates for the Approximation of a class of Variational Inequalities, Math. of Comp., Vol. 28, 1974, pp. 963-971.
- 10. M. FIEDLER, V. PTAK, On matrices with non-positive off-diagonal elements and positive principal minors, Czech. Math. J., Vol. 12, 1962, pp. 382-400.
- 11. R. GLOWINSKI, J. L. LIONS, R. TREMOLIERES, Book in print on the numerical analysis of the variational inequalities. Dunod, Paris.
- 12. C. LEVATI, F. SCARPINI, G. VOLPI, Sul trattamento numerico di alcuni problemi variazionali di tipo unilaterale, L.A.N. del C.N.R., Vol. 82, 1974.
- 13. J. L. LIONS, G. STAMPACCHIA, Variational inequalities, Comm. Pure Appl. Math., Vol. 20, 1967, pp. 493-519.
- 14. J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.

- 15. J. L. LIONS, E. MAGENES, Non-homogeneous boundary value problems and applications, I, II, III Springer., Berlin, 1972.
- 16. U. Mosco, An introduction to the approximate solution of variational inequalities, Constructive Aspects of functional Analysis. Corso C.I.M.E. 1971 Cremonese Roma, 1973.
- 17. U. MOSCO, F. SCARPINI, Complementarity systems and approximation of variational inequalities, R.A.I.R.O. R.1 1975, pp. 83-104.
- 18. U. MOSCO, G. STRANG, One sided approximation and variational inequalities, Bull. A.M.S., Vol. 80, 1974, pp. 308-312.
- 19. U. MOSCO, G. TROIANIELLO, On the smoothness of solutions of unilateral Dirichlet problems, Boll. U.M.I., Vol. 8, 1973, pp. 56-67.
- 20. J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967.
- 21. R. S. SACHER, On the solution of large, structured linear complementarity problems: II, Tecn. Rep. 73-5 Stanford Univ. California.
- 22. F. SCARPINI, Some algorithms solving the unilateral Dirichlet problem with two constraints. Calcolo, Vol. 12, 1975, pp. 113-149.
- 23. G. STAMPACCHIA, Variational inequalities, Theory and applications of monotone operators (Ghizzetti, A. ed.) Proceed. of NATO Advanced Study. Venice, 1968.
- 24. G. STRANG, A. E. BERGER, *The change in solution due to change in domain*, Proc. A.M.S. Symposium on partial differential equations. Berkeley, 1971.
- 25. G. STRANG, Approximation in the finite element method, Numer. Math., Vol. 19, 1972, pp. 81-98.
- 26. G. STRANG, G. J. FIX, An analysis of the finite element method, Prentice-Hall, 1973.
- 27. F. TREVES, Topological vector spaces, distributions and kernels, Academic Press. New-York, 1967.
- 28. M. M. VAINBERG, Variational methods for the study of nonlinear operators, Holden-Day, San Francisco, 1964.
- 29. M. ZLAMAL, Curved elements in the finite element method I, SIAM J. Numer. Anal. 10, 1973, 229-240.
- 30. M. ZLAMAL, Curved elements in the finite element method II, SIAM J. Numer. Anal. 11, 1974, 347-362.