RAIRO. ANALYSE NUMÉRIQUE

JIM JR. DOUGLAS TODD DUPONT HENRY H. JR. RACHFORD MARY F. WHEELER Local H^{-1} Galerkin and adjoint local H^{-1} Galerkin procedures for elliptic equations

RAIRO. Analyse numérique, tome 11, nº 1 (1977), p. 3-12 http://www.numdam.org/item?id=M2AN_1977_11_1_3_0

© AFCET, 1977, tous droits réservés.

L'accès aux archives de la revue « RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ R.A.I.R.O. Analyse numérique/Numerical Analysis (vol. 11, n° 1, 1977, p. 3 à 12)

LOCAL H⁻¹ GALERKIN AND ADJOINT LOCAL H^{-1} GALERKIN PROCEDURES FOR ELLIPTIC EQUATIONS (*)

by Jim DOUGLAS, Jr. (¹), Todd DUPONT (¹), Henry H. RACHFORD, Jr. (²) and Mary F. WHEELER $(^2)$

Abstract. - Two essentially dual, finite element methods for approximating the solution of the boundary value problem $Lu = \nabla \cdot (a \nabla u) + b \cdot \nabla u + cu = f$ on Ω , a rectangle, with u = 0 on $\partial \Omega$ are shown to give optimal order convergence. The local H^{-1} method is based on the inner product (u, L^*v) and the adjoint method on (Lu, v). Discontinuous spaces can be employed for the approximate solution in the local H^{-1} procedure and for the test space in the adjoint method.

1. INTRODUCTION

Consider the elliptic boundary value boundary problem

$$(Lu)(p) = \nabla \cdot (a(p)\nabla u) + b(p) \cdot \nabla u + c(p)u = f(p), \qquad p \in \Omega, \\ u(p) = 0, \qquad p \in \partial\Omega,$$
(1)

where Ω is the square $I \times I$ and I = (0, 1). We assume that $a, (\nabla a)_i, b_i$, $c \in C^1(\overline{\Omega})$, that $f \in L_2(\Omega)$, and that $0 < a_0 \leq a(p) \leq a_1, p \in \overline{\Omega}$, where a_0 and a_1 are constants. We further assume that, given $g \in L_2(\Omega)$, there exists a unique function $\varphi \in H^2(\Omega)$ satisfying $L \varphi = g$ in Ω and $\varphi = 0$ on $\partial \Omega$.

We shall use the following notation. Let $\delta : 0 = x_0 < x_1 < \ldots < x_N = 1$ be a partition of [0, 1]. Set $I_j = (x_{j-1}, x_j), h_j = x_j - x_{j-1}$, and $h = \max h_j$. $1 \leq i \leq N$

For $E \subset I$ let $P_r(E)$ denote the functions defined on I whose restrictions to E coincide with polynomials of degree at most r. Let

$$\mathscr{M}(-1, r, \delta) = \bigcap_{j=1}^{N} P_{r}(I_{j})$$

and, for k a non-negative integer,

$$\mathcal{M}(k, r, \delta) = \mathcal{M}(-1, r, \delta) \cap C^{k}(I),$$
$$\mathcal{M}^{0}(k, r, \delta) = \mathcal{M}(k, r, \delta) \cap \{v \mid v(0) = v(1) = 0\},$$
$$\tilde{\mathcal{M}}(k-1, r-1, \delta) = \{v' : v \in \mathcal{M}^{0}(k, r, \delta)\}.$$

^(*) Reçu août 1975. ⁽¹⁾ University of Chicago, Chicago, Illinois 60637, U.S.A.

⁽²⁾ Rice University, Houston, Texas 77001, U.S.A.

R.A.I.R.O. Analyse numérique/Numerical Analysis, vol. 11, nº 1, 1977

We assume that δ is quasi-uniform and that $r \ge 1$. For brevity, we set

$$\mathcal{N} = \mathcal{M}^{0}(k+2, r+2, \delta) \otimes \mathcal{M}^{0}(k+2, r+2, \delta),$$
$$\mathcal{Q} = \tilde{\mathcal{M}}(k+1, r+1, \delta) \otimes \tilde{\mathcal{M}}(k+1, r+1, \delta),$$

and

$$\mathcal{M} = \mathcal{M}(k, r, \delta) \otimes \mathcal{M}(k, r, \delta).$$

Note that \mathcal{Q} and \mathcal{M} are the images of \mathcal{N} under the maps given by $\partial^2/\partial x \, \partial y$ and $\partial^4/\partial x^2 \partial y^2$, respectively. The local H^{-1} Galerkin approximation is defined as the solution $U \in \mathcal{M}$

of the equations

$$(U, L^* \varphi) = (f, \varphi), \qquad \varphi \in \mathcal{N}, \tag{2}$$

where the inner product is the standard $L_2(\Omega)$ one. The adjoint local H^{-1} Galerkin approximation is given by $W \in \mathcal{N}$ satisfying

$$(LW, \varphi) = (f, \varphi), \qquad \varphi \in \mathcal{M}.$$
 (3)

We first show that there exists a unique U and a unique W satisfying (2) and (3), respectively, for $L = \Delta$. Optimal L_2 error estimates are also obtained for the operator Δ . We then generalize our results to obtain optimal L_2 results for operators of the form given in (1).

Let $H^k(\Omega)$ be the Sobolev space of functions having $L_2(\Omega)$ -derivatives through order k. Denote the usual norm on $H^s(\Omega)$ by $\|\cdot\|_s$; for s=0the subscript will be omitted. We also use the norm

$$||w||_{-1} = \sup_{z \in H^1(\Omega)} \frac{(w, z)}{||z||_1}.$$

If the reader wishes to use any of the results derived below for non-integral indices, then standard interpolation theory [3] should be applied.

2. ERROR ESTIMATES FOR $L = \Delta$

First note that, since dim $\mathcal{M} = \dim \mathcal{N}$, uniqueness implies existence.

LEMMA 1 : Suppose that $V \in \mathcal{M}$ satisfies

$$(V, \Delta \varphi) = 0, \qquad \varphi \in \mathcal{N}.$$

Then, $V \equiv 0$.

Proof: Note that there exists a unique $Q \in \mathcal{N}$ such that $Q_{xxyy} = V$. Integrating by parts, we have

$$(\nabla Q_{xy}, \nabla w) = 0, \qquad w \in \mathcal{Q}.$$

Since $Q_{xy} \in \mathcal{Q}$, we note that $Q_{xxy} = 0$ and $Q_{yyx} = 0$. Thus, V = 0.

Since the matrix arising in (3) is the adjoint of that of (2), there exists a unique W satisfying (3) for $L = \Delta$.

R.A.I.R.O. Analyse numérique/Numerical Analysis

4

We now derive L_2 and negative norm error estimates for U-u when $L = \Delta$. Let $Z \in \mathcal{N}$ satisfy $Z_{xxyy} = U$. Also let $z_{xxyy} = u$ in Ω and z = 0 on $\partial \Omega$. We observe from (1) and (2) with $\xi = Z-z$ that

$$(\nabla \xi_{xy}, \nabla w) = 0, \qquad w \in \mathcal{Q}.$$
 (4)

THEOREM 1 : Let z and Z be as defined above, and let $z_{xy} \in H^s(\Omega)$ for some s such that $1 \leq s \leq r+2$. Then,

$$||(z-Z)_{xy}|| + h ||(z-Z)_{xy}||_1 \le C ||z_{xy}||_s h^s$$

Proof : It follows from (4) that

$$\left\| \nabla \xi_{xy} \right\| = \inf_{\chi \in \mathcal{Q}} \left\| \nabla (z_{xy} - \chi) \right\|.$$
(5)

Let $T: H^1(I) \to \mathcal{M}(k+1, r+1, \delta)$ be determined by the relations

$$\int_0^1 (g-Tg)' v \, dx = \int_0^1 (g-Tg) \, dx = 0, \qquad v \in \mathcal{M}(k, r, \delta).$$

It is easy to see that (g - Tg)(0) = (g - Tg)(1) = 0, by taking v = x or 1 - x. Since (Tg)' is the $L_2(I)$ -projection of g' into $\mathcal{M}(k, r, \delta)$,

$$||(g-Tg)'||_{L_2(I)} \leq C ||g^{(s)}||_{L_2(I)} h^{s-1}, \quad 1 \leq s \leq r+2.$$

Let

$$-\varphi'' = \zeta = g - Tg, \qquad x \in I,$$

$$\varphi'(0) = \varphi'(1) = 0,$$

$$\int_0^1 \varphi \, dx = 0.$$

Then for $v \in \mathcal{M}(k, r, \delta)$ appropriately chosen

$$|\zeta||^2 = (\zeta', \varphi' - v) \leq C ||\zeta'||_{L_2(I)} ||\zeta||_{L_2(I)} h,$$

and

$$||g - Tg||_{L_2(I)} \le C ||g^{(s)}||_{L_2(I)} h^{(s)}, \quad 1 \le s \le r+2.$$

Consider $(T \otimes T) z_{xy} \in \mathcal{M} (k+1, r+1, \delta) \otimes \mathcal{M} (k+1, r+1, \delta)$. It is easy to see that $(T \otimes T) z_{xy} \in \mathcal{Q}$ and that

$$||z_{xy} - (T \otimes T) z_{xy}||_q \le C ||z_{xy}||_s h^{s-q}, \qquad 2 \le s \le r+2, \quad 0 \le q \le 1, \quad (6)$$

since $T \otimes T - I \otimes I = (T - I) \otimes I + I \otimes (T - I) + (T - I) \otimes (T - I)$. Thus, from (5) and (6),

$$\left|\left|\nabla \xi_{xy}\right|\right| \leq C \left|\left|z_{xy}\right|\right|_{s} h^{s-1}, \qquad 2 \leq s \leq r+2.$$

The inequality

$$||\nabla \xi_{xy}|| \leq C ||\nabla z_{xy}|| \leq C ||z_{xy}||_1,$$

vol. 11, nº 1, 1977

is obvious, and the desired result follows:

$$|\nabla \xi_{xy}|| \leq C ||z_{xy}||_s h^{s-1}, \quad 1 \leq s \leq r+2.$$

Since ξ_{xy} has average value zero,

$$||\xi_{xy}||_1 \leq C ||z_{xy}||_s h^{s-1}, \quad 1 \leq s \leq r+2.$$

To obtain the $L_2(\Omega)$ estimate, first let

$$-\Delta \varphi = \xi_{xy}, \qquad (x, y) \in \Omega,$$
$$\frac{\partial \varphi}{\partial n} = 0, \qquad (x, y) \in \partial \Omega.$$

Since $(\xi_{xy}, 1) = 0$, there exists φ such that $(\varphi, 1) = 0$ and $\|\varphi\|_2 \leq C \|\xi_{xy}\|$. Then,

and
$$\begin{aligned} \left\| \xi_{xy} \right\|^2 &= (\nabla \xi_{xy}, \nabla (\varphi - \chi)), \qquad \chi \in \mathcal{Q}, \\ \left\| \xi_{xy} \right\|^2 &\leq C \left\| \nabla \xi_{xy} \right\| \inf_{\chi \in \mathcal{Q}} \left\| \nabla (\varphi - \chi) \right\|. \end{aligned}$$

The function ξ_{xy} can be expanded in a double cosine series:

$$\xi_{xy} = \sum_{p, q=1}^{\infty} c_{pq} \cos \pi p x \cos \pi q y.$$

Thus,

$$\varphi = \frac{1}{\pi^2} \sum_{p, q=1}^{\infty} \frac{c_{pq}}{p^2 + q^2} \cos \pi px \cos \pi qy.$$

It then follows by approximating each product of cosines in 2 that

$$\inf_{\chi \in \mathcal{Q}} \left| \left| \nabla (\varphi - \chi) \right| \right| \leq Ch \left| \left| \xi_{xy} \right| \right|,$$

and the theorem has been proved.

Denote by P the restriction of the projection T to the subclass of $H^1(I)$ consisting of functions having zero average value. Let $\mathscr{P} = P \otimes P$. We wish to obtain a better H^1 estimate of $v = \mathscr{P} z_{xy} - Z_{xy}$ than would

follow from (6) and theorem 1. We deduce from (4) that

$$(\nabla v, \nabla w) = (\nabla (\mathscr{P} z_{xy} - z_{xy}), \nabla w) = \tau_x + \tau_y, \qquad w \in \mathcal{Q}.$$
(7)

Using the definition of P and integration by parts, we see that, for $w \in \mathcal{Q}$,

$$\tau_{x} = (((I \otimes P)(P \otimes I) z_{xy} - z_{xy})_{x}, w_{x})$$

= $(I \otimes (P - I) z_{xxy}, w_{x})$
= $- (I \otimes (P - I) z_{xxy}, w)$
+ $\int_{0}^{1} I \otimes (P - I) z_{xxy}(., y) w(., y) |_{0}^{1} dy.$ (8)

R.A.I.R.O. Analyse numérique/Numerical Analysis

6

Note that z has the representation

$$z(x, y) = \int_{0}^{y} \int_{0}^{x} (x-\alpha)(y-\beta)u(\alpha, \beta) d\alpha d\beta$$

- $x \int_{0}^{y} \int_{0}^{1} (1-\alpha)(y-\beta)u(\alpha, \beta) d\alpha d\beta$
- $y \int_{0}^{1} \int_{0}^{x} (x-\alpha)(1-\beta)u(\alpha, \beta) d\alpha d\beta$
+ $xy \int_{0}^{1} \int_{0}^{1} (1-\alpha)(1-\beta)u(\alpha, \beta) d\alpha d\beta.$ (9)

One can easily verify from (9) that the boundary terms in (8) are zero since $z_{xxy}(0, y) = 0$ and $z_{xxy}(1, y) = 0$. We also observe that

$$\int_{0}^{1} z_{xxxy} dy = z_{xxx}(x, 1) - z_{xxx}(x, 0) = 0,$$

since z vanishes on the boundary. Similarly, $\int_0^1 z_{yyyx} dx = 0$. Thus, we see that

$$||v||_{1} \leq C ||\psi||_{-1},$$
 (10)

where

$$\psi = I \otimes (I - P)(z_{xxxy}) + (I - P) \otimes I(z_{xyyy}).$$
(11)

It follows that

$$\|\Psi\|_{-1} \leq \left(\int_0^1 \left\| I \otimes (I-P) \frac{\partial^4 z}{\partial x^3 \partial y}(x, .) \right\|_{H^{-1}(I)}^2 dx\right)^{1/2} + \left(\int_0^1 \left\| (I-P) \otimes I \frac{\partial^4 z}{\partial x \partial y^3}(., y) \right\|_{H^{-1}(I)}^2 dy\right)^{1/2}.$$

It is easy to show that

$$||(I-P)f||_{H^{-1}(I)} \leq C ||f^{(s)}||_{L^{2}(I)} h^{s+1},$$

provided that

$$\int_0^1 f dx = 0,$$

by using the auxiliary problem

$$-\phi'' = g - \int_0^1 g \, dx, \qquad x \in I,$$

$$\phi'(0) = \phi'(1) = 0,$$

vol. 11, nº 1, 1977

where $g \in H^1(I)$. Thus,

$$\|\psi\|_{-1} \leq C \left\{ \left\| \frac{\partial^{s+1} u}{\partial x^s \partial y} \right\| + \left\| \frac{\partial^{s+1} u}{\partial x \partial y^s} \right\| \right\} h^{s+2}$$
(12)

for $0 \leq s \leq r+1$.

THEOREM 2 : Let u be the solution to (1) with $L = \Delta$, and let $U \in \mathcal{M}$ satisfy (2). Let \hat{U} be the L_2 projection of u into \mathcal{M} . Then,

$$\left\| U - \hat{U} \right\| \leq C \left\{ \left\| \frac{\partial^{s+1} u}{\partial x^{s} \partial y} \right\| + \left\| \frac{\partial^{s+1} u}{\partial x \partial y^{s}} \right\| \right\} h^{s+1}$$
(13)

for $0 \leq s \leq r+1$.

Proof : Since \hat{U} satisfies

$$(\hat{U}-u, v)=0, \quad v \in \mathcal{M},$$

one can easily verify that

$$\hat{U} = (\mathscr{P} \, z_{xy})_{xy}$$

Thus, (13) follows from (10), (12), and the quasi-uniformity hypothesis on the partition δ .

COROLLARY : The error U-u satisfies the following bounds:

$$|| U-u || \leq C || u ||_{s} h^{s}, \qquad 1 \leq s \leq r+1,$$
$$|| U-u ||_{L_{\infty}(\Omega)} \leq C \left\{ || u ||_{W_{\infty}^{s}(\Omega)} + \left\| \frac{\partial^{s+1} u}{\partial x^{s} \partial y} \right\| + \left\| \frac{\partial^{s+1} u}{\partial x \partial y^{s}} \right\| \right\} h^{s}$$
$$0 \leq s \leq r+1.$$

Proof: The $L_2(\Omega)$ -estimate is a trivial consequence of (13). To obtain the $L_{\alpha}(\Omega)$ -estimate, note first that (13) and the quasi-uniformity of δ imply that, for $0 \leq s \leq r+1$,

$$\left\| U - \hat{U} \right\|_{L_{\infty}(\Omega)} \leq \left\| v \right\|_{W_{\infty}^{2}(\Omega)} \leq C \left\{ \left\| \frac{\partial^{s+1} u}{\partial x^{s} \partial y} \right\| + \left\| \frac{\partial^{s+1} u}{\partial x \partial y^{s}} \right\| \right\} h^{s}.$$

It follows from inequality (28) of [2] or from [1] that

$$\left\| u - \hat{U} \right\|_{L_{\infty}(\Omega)} \leq C \left\| u \right\|_{W^{s}_{\infty}(\Omega)} h^{s}, \qquad 0 \leq s \leq r+1.$$

We now wish to consider the adjoint local H^{-1} Galerkin procedure for $L = \Delta$. As noted earlier, there exists a unique $W \in \mathcal{N}$ satisfying

$$(\Delta W, v) = (f, v), \qquad v \in \mathcal{M}. \tag{14}$$

THEOREM 3: Let u be the solution to (1) with $L = \Delta$ and assume that $u_{xy} \in H^s(\Omega)$, $1 \leq s \leq r+2$. Let $W \in \mathcal{N}$ be defined by (14). Then,

$$|(W-u)_{xy}|| + h ||(W-u)_{xy}||_1 \le C ||u_{xy}||_s h^s$$

R.A.I.R.O. Analyse numérique/Numerical Analysis

Proof: Just as in (4),

$$(\nabla (W-u)_{xy}, \nabla w_{xy}) = 0, \qquad w \in \mathcal{N}$$

Since w_{xy} represents an arbitrary element of \mathcal{Q} , the theorem follows from the analysis of (4) given in the proof of theorem 1.

Next, we shall derive an $H^1(\Omega)$ -estimate of the error W-u. Note that

$$\begin{aligned} \left\| \nabla (W-u) \right\|^2 &= -(\Delta (W-u), W-u) \\ &= -(\Delta (W-u), W-u-\chi), \qquad \chi \in \mathcal{M}. \end{aligned}$$
(15)

We choose $\chi \in \mathcal{M}$ as the local H^{-1} Galerkin approximation to W-u; i. e.,

$$(W-u-\chi, \Delta \varphi) = 0, \qquad \varphi \in \mathcal{N}.$$
 (16)

By the corollary to theorem 2,

$$|| W-u-\chi || \leq C || W-u ||_1 h.$$

From (15) and (16), we see that

$$||\nabla(W-u)||^2 = -(W-u-\chi, \Delta(W-u-\mu)), \qquad \mu \in \mathcal{N}.$$

Hence,

$$\begin{aligned} ||\nabla(W-u)||^{2} &\leq Ch || W-u ||_{1} \inf_{\mu \in \mathcal{N}} || u-\mu ||_{2} \\ &\leq Ch^{s+1} || W-u ||_{1} || u ||_{s+2}, \qquad 0 \leq s \leq r+1. \end{aligned}$$

Since the boundary values of u were imposed strongly on the elements of \mathcal{N} , the $L_2(\Omega)$ -norm of the $\nabla(W-u)$ is equivalent to the $H^1(\Omega)$ -norm of W-u; thus,

$$|| W-u ||_1 \leq C || u ||_{s+2} h^{s+1}, \qquad 0 \leq s \leq r+1.$$

As a result of the quasi-uniformity of δ , it follows easily that

$$| W-u ||_2 \leq C || u ||_{s+2} h^s, \quad 0 \leq s \leq r+1.$$
 (17)

Now, we shall seek an estimate of the error in $L_2(\Omega)$. Consider

$$\Delta \varphi = W - u \quad \text{on} \quad \Omega,$$

$$\varphi = 0 \quad \text{on} \quad \partial \Omega.$$

Then,

$$\begin{aligned} \left| \left| \begin{array}{l} W-u \right| \right|^2 &= (W-u, \Delta \varphi) \\ &= (\varphi, \Delta (W-u)) \\ &= (\varphi - \varphi^*. \Delta (W-u)), \qquad \varphi^* \in \mathcal{M}. \end{aligned}$$

vol. 11, nº 1, 1977

Thus, choosing an appropriate φ^* , we obtain the inequality

$$|| W-u ||^{2} \leq C || \varphi ||_{2} h^{2} || \Delta (W-u) ||$$
$$\leq C || W-u || || \Delta (W-u) || h^{2};$$

therefore,

$$|| W-u || \le C || u ||_{s+2} h^{s+2}, \quad 0 \le s \le r+1.$$

Summarizing the above results, we have proved the following theorem.

THEOREM 4: Let u be the solution to (1) with $L = \Delta$ and assume that $u \in H^s(\Omega)$, $2 \leq s \leq r+3$. Then, if W is defined by (14),

$$|| W-u ||_q \leq C || u ||_s h^{s-q}, \quad 0 \leq q \leq 2.$$

If $k \ge 0$, then the range on q in theorem 4 can be extended to $0 \le q \le \min(k+3, s)$ by repeated use of quasi-uniformity to obtain the analogue of (17) in $H^{k+3}(\Omega)$.

3. THE GENERAL CASE

Let $U \in \mathcal{M}$ be determined as the solution of (2), and introduce an auxiliary function $U_1 \in \mathcal{M}$ as the solution of

$$(U_1 - u, \Delta v) = 0, \qquad v \in \mathcal{N}.$$

Let $\xi = U - U_1$, and let ψ be given by the Dirichlet problem

$$L^* \psi = \xi \quad \text{on} \quad \Omega,$$
$$\psi = 0 \quad \text{on} \quad \partial \Omega$$

Then, if $\psi^* \in \mathcal{N}$,

$$\begin{aligned} |\xi||^2 &= (\xi, \ L^* \psi) \\ &= (\xi, \ L^* (\psi - \psi^*)) + (\xi, \ L^* \psi^*) \\ &= (\xi, \ L^* (\psi - \psi^*)) + (\eta, \ L^* \psi^*), \end{aligned}$$

where $\eta = u - U_1$. We choose $\psi^* \in M$ to satisfy

$$(\Delta(\psi - \psi^*), v) = 0, \qquad v \in \mathcal{M}.$$

Thus, with \tilde{b} and \tilde{c} indicating the lower order coefficients of L^* ,

$$\begin{split} ||\xi||^{2} &= (a\,\xi,\,\Delta(\psi - \psi^{*})) + (\xi,\,\bar{b}\cdot\nabla(\psi - \psi^{*})) \\ &+ (\xi,\,\bar{c}\,(\psi - \psi^{*})) + (\eta,\,L^{*}\,\psi^{*}) \\ &= (a\,\xi - \chi,\,\Delta(\psi - \psi^{*})) + (\xi,\,\bar{b}\cdot\nabla(\psi - \psi^{*})) \\ &+ (\xi,\,\bar{c}\,(\psi - \psi^{*})) + (\eta,\,L^{*}\,\psi^{*}), \qquad \chi \in \mathcal{M}. \end{split}$$

R.A.I.R.O. Analyse numérique/Numerical Analysis

It is well-known that, since $a \in C^1(\overline{\Omega})$,

$$\inf_{\chi \in \mathcal{M}} ||a\xi - \chi|| \leq C ||\xi|| h.$$

Replacing u by ψ and W by ψ^* in theorem 4, we observe that

$$||\psi - \psi^*||_q \leq C ||\psi||_2 h^{2-q}, \quad 0 \leq q \leq 2.$$

Since $|| \psi ||_2 \leq C || \xi ||$,

$$||\xi||^{2} \leq C\{h ||\xi||^{2} + ||\eta||||\xi||\}.$$

Hence, for h sufficiently small,

 $||\xi|| \leq C ||\eta||.$

Consequently, we have the following theorem.

THEOREM 5: There exists $h_0 = h_0(L) > 0$ such that a unique solution $U \in \mathcal{M}$ of (2) exists for $h \leq h_0$; moreover, if $1 \leq s \leq r+1$ and if $u \in H^s(\Omega)$ is the solution of (1), then

$$||U-u|| \leq C ||u||_s h^s.$$

We shall now consider error estimates for the adjoint local H^{-1} Galerkin procedure. Note that the ellipticity of L implies a Gårding inequality of the form

$$C_0 || \varphi ||_1^2 \leq -(L\varphi, \varphi) + C_1 || \varphi ||^2$$

for $\varphi \in H^2(\Omega)$ such that $\varphi = 0$ on $\partial\Omega$, where C_0 is some positive constant. Since (1) and (3) imply that $(L(W-u), \psi) = 0$ for $\psi \in \mathcal{M}$,

$$C_0 || W-u ||_1^2 - C_1 || W-u ||^2 \leq -(L(W-u), W-u-\psi), \quad \psi \in \mathcal{M}.$$

For h sufficiently small, theorem 5 when applied to the operator L^* instead of L implies the existence of $\psi \in \mathcal{M}$ such that

$$(Lv, W-u-\psi)=0, v \in \mathcal{N},$$

and

$$|| W-u-\psi || \leq C || W-u ||_1 h.$$

Thus, for any $\theta \in \mathcal{N}$:

$$C_0 || W-u ||_1^2 - C_1 || W-u ||^2 \leq -(L(\theta-u), W-u-\dot{\psi}) \\ \leq C || u-\theta ||_2 || W-u ||_1 h.$$

By noting that $|| W - u ||^2 \le || W - u ||_1 || W - u ||$, we see that

$$|| W-u ||_1 \leq C(|| u ||_{s+2} h^{s+1} + || W-u ||), \qquad 0 \leq s \leq r+1$$

vol. 11. nº 1, 1977

Again by the quasi-uniformity of δ ,

$$|| W-u ||_2 \leq C(|| u ||_{s+2} h^s + h^{-1} || W-u ||), \quad 0 \leq s \leq r+1.$$

In order to obtain an $L_2(\Omega)$ -estimate, we now consider the auxiliary Dirichlet problem given by

$$L^* \varphi = W - u \quad \text{on} \quad \Omega,$$

$$\varphi = 0 \quad \text{on} \quad \partial \Omega.$$

Then,

$$|| W-u ||^{2} = (W-u, L^{*}\phi) = (L(W-u), \phi)$$
$$= (L(W-u), \phi-\phi^{*}), \phi^{*} \in \mathcal{M}.$$

Thus, choosing an appropriate φ^* , we obtain the inequality

$$|| W-u ||^{2} \leq C || W-u ||_{2} || \varphi ||_{2} h^{2}$$
$$\leq C || W-u ||_{2} || W-u || h^{2},$$

and

$$|| W-u || \le C || W-u ||_2 h^2$$

$$\le C (|| u ||_{s+2} h^{s+2} + || W-u || h), \qquad 0 \le s \le r+1.$$

Hence, we have proved the following theorem.

THEOREM 6: There exists $h_0 = h_0(L) > 0$ such that there exists a unique solution $W \in \mathcal{N}$ of (3), and if $2 \leq s \leq r+3$ and if the solution u of (1) belongs to $H^s(\Omega)$, then

$$|W-u||_q \leq C ||u||_s h^{s-q}, \qquad 0 \leq q \leq 2.$$

The range on q can be extended just as for theorem 4.

REFERENCES

- 1. J. DESCLOUX, On Finite Element Matrices, S.I.A.M. J. Numer. Anal., Vol. 9, 1972, pp. 260-265.
- 2. J. DOUGLAS, Jr., T. DUPONT and L. WAHLBIN, The stability in L^q of the L²-projection into finite element function spaces, Numer. Math., Vol. 23, 1975, pp. 193-197.
- 3. J.-L. LIONS and E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, New York, 1972.