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LOCAL H-* GALERKIN
AND ADJOINT LOCAL H'1 GALERKIN

PROCEDURES
FOR ELLIPTIC EQUATIONS (*)

by Jim DOUGLAS, JI \ (*),

Todd DUPONT (*), Henry H. RACHFORD, Jr. (2)
and Mary F. WHEELER (2)

Abstract. — Two essentially dual, finite element methods for approximating the solution
of the boundary value p rob le m Lu =• V - ( Ö V « ) + b • V u + cu — f on Q, a rectangle•, with
u = O on dCl are shown to give optimal order convergence. The local H~1 method is based
on the inner product («, L* v) and the adjoint method on {Lu, v). Discontinuons spaces can be
employed for the approximate solution in the local H'1 procedure and for the test space in
the adjoint method.

1. INTRODUCTION

Consider the elliptic boundary value boundary problem

( L K ) ( P ) = V - ( Û
, "0)

u ( p) = 0, p e oQ,

where Q is the square Ixl and I = (0, 1). We assume that a, (Va) i ? bti

ceC1 (Q), that ƒ e L2 (O), and that 0 < a0 ^ a (p) ^ al9 pe€l, where a0

and ÖJ are constants. We further assume that, given geL2 (Q), there exists
a unique function (p e H2 (Q) satisfying L (p = g in Q and <p = 0 on d£l.

We shall use the following notation. Let ô : 0 = JC0 < xt < . . . < xN = 1
bea partition of [0, 1]. Set Ij = (xj-u Xj)>hj = Xj — Xj_u and h — max hs.

For £" c / let P r (£) dénote the functions defined on I whose restrictions
to E coincide with polynomials of degree at most r. Let

•*( - l , r ,ô )= 0 ^(^)

and, for k a non-negative integer,

•UT(k, r, ô) = y / / ( - l , r, S )nC k ( / ) ,

^r°(fe, r, 8) = ^(fc , r, 5 )n{ü |ü (0) = ü(l) = 0} ,

-U r-U S) = { i / : veJV0(k9 r, Ô)}.

(*) Reçu août 1975.
O University of Chicago, Chicago, Illinois 60637, U.S.A.
(2) Rice University, Houston, Texas 77001, U.S.A.
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4 J. DOUGLAS, Jr., T. DUPONT, H. H. RACHFORD, M. F. WHEELER

We assume that 8 is quasi-uniform and that r ̂  1. For brevity, we set

Jf = ̂ °(/c + 2, r + 2, 5)® ^°(/c + 2, r + 2, 5),

? 1 , r + i , 8 )®^(Jk+l , r+1 , 5),
and

UT = uST (/c, r, 8) ® M (K ry 8).

Note that J and Jl are the images of Jf under the maps given by d2jdx ôy
and 84/dx2 ôy2, respectively.

The local H-1 Galerkin approximation is defined as the solution UeJl
of the équations

(17, L*cp) = (/,cp), yejr, (2)

where the inner product is the Standard L2 (Q) one. The adjoint local H'1

Galerkin approximation is given by WeJf satisfying

(LW9 <?) = (ƒ, 9), cpe^/. (3)

We first show that there exists a unique U and a unique W satisfying (2)
and (3), respectively, for L = A. Optimal L2 error estimâtes are also obtained
for the operator À. We then generalize our results to obtain optimal L2 results
for operators of the form given in (1).

Let Hk (Q) be the Sobolev space of fonctions having L2 (Q)-derivatives
through order k. Dénote the usual norm on Hs (Q) by || . ||5; for s = 0
the subscript will be omitted. We also use the norm

II II (M** Z)

I k | | - I = sup K-—'
zeffi(ft) | |z | | i

If the reader wishes to use any of the results derived below for non-integrai
indices, then standard interpolation theory [3] should be applied.

2. ERROR ESTIMATES FOR L = A

First note that, since dim M = dim Jf, uniqueness implies existence.

LEMMA 1 : Suppose that VeJi satisfies

(V, À<p) = 0, yejr.
Then, V = 0.

Proof : Note that there exists a unique QeJf such that Qxxyy = V. Inte-
grating by parts, we have

Since Qxy e X we note that Qxxy = 0 and Qyyx = 0. Thus, V = 0.
Since the matrix arising in (3) is the adjoint of that of (2), there exists a

unique W satisfying (3) for L — A.

R.A.I.R.O. Analyse numérique/Numericai Analysis



LOCAL H X GALERKIN METHODS 5

We now dérive L2 and négative norm error estimâtes for U—u when L = A.
Let ZEJV satisfy Zxxyy = U. Also let zxxyy = M in Q and z = 0 on dQ. We
observe from (1) and (2) with £ = Z-z that

( V ^ , V » ) = 0, «>eü. (4)

THEOREM 1 : £ef z and Z be as defined above, and let zxy e H5 (Ci) for some s
such that 1 ̂  s ^ r+2. Then,

|| (z-Z)xy i| + h\\(z-Z)xy\\1 g C||zxyj|s/i
s.

; It follows from (4) that

| | | | (5)

Let T : H1 (l)-*Jt (k + l, r + l, 8) be determined by the relations

\\g-Tg)'udx= [\g-Tg)dx = 0, veJt{k,r,b).
Jo Jo

It is easy to see that (g- Tg) (0) = (g- Tg) (1) = 0, by taking v = x or 1 -x.
Since (Tg)' is the L2 (I )-projection of g' into Jf(k,r,§),

Let
-cp" = Ç = g - r g , xei,

Jo
Then for veJl (k9 r, 8) appropriately chosen

and

Consider ( r ® T)zxy&M (k + l, r + l, S) ® ^ (A: + l, r + l, 8). It is easy
to see that (T ® T) zxy e â and that

since r ® T-I ® ƒ = (T- / ) ® / + ƒ ® (T-I) +(T-I) ® (T-I). Thus,
from (5) and (6),

The inequality

vol. 11, n° 1, 1977
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is obvious, and the desired resuit follows:

Since ^xy has average value zero,

II^II^Cl^H^-1,
To obtain the L2 (Q) estimate, first let

^ = 0, (x, y) e dû.
dn

Since Ç^xy, 1) = 0, there exists cp such that (<p, 1) = 0 and || cp }|2 ̂  C |
Then,

The function ^ can be expanded in a double cosine series:

Cpq C 0 S ^ PX C O S

Thus,
1

n2 p,q=i p2 + q2

It then follows by approximating each product of cosines in J£ that

and the theorem has been proved.
Dénote by P the restriction of the projection T to the subclass of H1 (ƒ)

consisting of functions having zero average value. Let & = P ® P.
We wish to obtain a better H1 estimate of v = & zxy — Zxy than would

follow from (6) and theorem 1. We deduce from (4) that

(Vv, Vu?) = (V(&>zxy-zxy)9 Vw) = xx + ty, we± (7)

Using the définition of P and intégration by parts, we see that, for w e Ü,

T, = (((/®P) (P ®I)zxy-Zxy)x,Wx)

= (1®(P-Ï)zxxyywx)

= -(I®(P-I)zxxxy,w)
•1

l®(P-I)zxxy{.,y)w{.,y)\1
0dy- (8)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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LOCAL H l GALERKIN METHODS

Note that z has the représentation

ojo

-y\ I (x-a)(l-
Jo Jo

(9)
o Jo

One can easily verify from (9) that the boundary terms in (8) are zero since
zxxy(0, y) = 0 and zxxy(l,y) = 0. We also observe that

Jo
?xxXy ày = zxxx (x, 1) - zxxx (x, 0) = 0,

fsince z vanishes on the boundary. Similarly, zyyyx dx = 0. Thus, we see that
Jo
f1

Jo

where

It follows that

(10)

(11)

- (i: d4z
ôx3dy

(x, .)
l / 2

2 \ 1/2
dy) .

H-'U) }

It is easy to show that

\\(l-P)f\\H-HnèC\\f<*\\L2(l)h>+\

provided that

by using the auxiliary problem

Jo
-<p" = g - gdx, xel,

Jo

vol. 11, n° 1, 1977
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where g e H1 (/). Thus,

ôx'dy dxdf
for 0

l's + 2 (12)

r + 1.

THEOREM 2 : Let u be the solution to (1) with L = A, and let UeJt satisfy (2).
Û be the L2 projection of u into M, Then,

\\u-v\\gc
for 0 S s ^ r + l .

Proof : Since U satisfies

Ôs+1u

ÔxsÔy

ôs+lu

dxdf
(13)

(U-u, i?) = 0, Dei/,

one can easily verify that

Thus, (13) follows from (10), (12), and the quasi-uniformity hypothesis on
the partition 5.

COROLLARY : The error U—u satisfies the following bounds:

hs.
ôxdys

Proof: The L2 (Q)-estimate is a trivial conséquence of (13). To obtain the
Loc (Q)-estimate, note first that (13) and the quasi-uniformity of 8 imply
that, for 0 ^ s ^

ôs+1u

dxdf
hs.

It follows from inequality (28) of [2] or from [1] that

We now wish to consider the adjoint local H'1 Galerkin procedure
for L = A. As noted earlier, there exists a unique We Jf satisfying

(A W, ») = (ƒ, »), üe^r. (14)
THEOREM 3: Let u be the solution to (1) with L = A an*/ assume that

uxye H- (Q), 1 ̂  j ^ r+2. Lef JFe ̂  èe rfe/znerf 6j (14). Then,

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Proof: Just as in (4),

Since wxy represents an arbitrary element of â> the theorem follows from the
analysis of (4) given in the proof of theorem 1.

Next, we shall dérive an H1 (Q)-estimate of the error W—u. Note that

- u ) , W-u)

u), W-u-%), %eJt. (15)

We choose %e J( as the local H'1 Galerkin approximation to W—u\ i. e.,

(W-«-X,A<p)=*0, tpejr, (16)

By the corollary to theorem 2,

\\W-u-x\\4C\\W-u\lh.

From (15) and (16), we see that

Hence,

Since the boundary values of u were imposed strongly on the éléments of J^,
the L2 (ü)-norm of the V (W-u) is equivalent to the H1 (Q)-norm of W-u;
thus,

As a resuit of the quasi-uniformity of 8, it follows easily that

\\W-u\\2èC\\u\\s+2h\ O g ^ r + L . (17)

Now, we shall seek an estimate of the error in L2 (Q). Consider

Aq> = W— u on Q,

cp = O on 3Q.

Then,

voL 11, n° 1, 1977
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Thus, choosing an appropriate cp*, we obtain the inequality

|| V-ii | |2gC| |q>| | afc2 | |A(iy-i ,) | |

SC\\ W-u\\\\A{W-u)\\h2;
therefore,

|| J V - i i | | ^ C | j i i | | 1 + 2 A g + 2 , O ^ s ^ r + 1 .

Summarizing the above results, we have proved the following theorem.

THEOREM 4 : Let u be the solution to (1) with L = À and assume that ue Hs (Q),
2 S s ^ r + 3. 77^n, i/ W w <fejïwetf ^ (14),

If ^ ^ 0, then the range on q in theorem 4 can be extended to
0 ^ ^ min (fc+3, s) by repeated use of quasi-uniformity to obtain the
analogue of (17) in Hk+3 (Q).

3. THE GENERAL CASE

Let Ue M be determined as the solution of (2), and introducé an auxiliary
function Uxe Jt as the solution of

Let ^ = ^ ~ ^ i î and let \|/ be given by the Dirichlet problem

L*\|/ = Ç on Q,

\(/ = 0 on dih
Then, if \|/* G ^ ,

where T| = u—U1. We choose i|/*eM to satisfy

(A(xj/-vj/*X )̂ = 0, veJt.

Thus, with 2 and c indicating the lower order coefficients of L*,

I, L*v]/*),

R.A.I.R.O. Analyse numérique/Numerical Analysis
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It is well-known that, since aeC1 (Q),

Replacing u by \]/ and W by v|/* in theorem 4, we observe that

Since

Hence, for h sufficiently small,

Consequently, we have the following theorem.

THEOREM 5: There exists hQ = h0 (L) > 0 such that a unique solution Ue M
of (2) exists for h g h0; moreover, if 1 g s g r + \ and if ue Hs (Q) is the
solution of (1), then

\\U-u\\<,C\\u\\sh\

We shail now consider error estimâtes for the adjoint local H ~l Galerkin
procedure. Note that the eilipticity of L implies a Gârding inequality of the
form

for (p e H2 (Q) such that cp = 0 on d€l, where Co is some positive constant.
Since (1) and (3) imply that (L (W-u\ \|/) = 0 for \[/e Jt,

For h sufficiently small, theorem 5 when applied to the operator L* instead
of L implies the existence of \J/e M such that

(L», W-u-ty) = 0, veJT,
and

|| W-n-il'liSCll W-u\\xh.
Thus, for any QejV:

Cou ^«iHÎ-dH W~u\\2è-(L{6~ul W-u-y)

^C| | t t -9 | |2 | | W-uHh.

By noting that || W-u\\2 g || W~u\\x \\ W-u\\, we see that

|| ^-fi| |igC(||ti | | I+2fc'+1+|| W-u\\)t O g s ^ r + 1 .

vol. 11. n° 1, 1977
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Again by the quasi-uniformity of 5,

|| ^ -« | | 2^C( | | u | | , + 2 f c B + fc-1|| W-u\\), O g s g r + 1 .

In order to obtain an L2 (Q)-estimate, we now consider the auxiliary Dirichlet
problem given by

L*q>= W-u on Q,

(p = 0 on 3Q.
Then,

Thus, choosing an appropriate <p*, we obtain the inequality

and
\\W-u\\£C\\W-u\\2h>

£C(\\u\\8+2V+2+\\W-u\\h), O g s

Hence, we have proved the following theorem.

THEOREM 6: There exists h0 = h0 (L) > 0 such thaï there exists a unique
solution We Jf of(3), and if 2 ^ s ^ r+3 and if the solution u of{\) belongs
to HS(CÏ), then

\\ W-u\\q£C\\u\lW-q, Q^q^2.

The range on q can be extended just as for theorem 4.
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