Ph. Clément

Approximation by finite element functions using local regularization

Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, tome 9, n ${ }^{\circ}$ R2 (1975), p. 77-84
http://www.numdam.org/item?id=M2AN_1975_9_2_77_0
© AFCET, 1975, tous droits réservés.
L'accès aux archives de la revue «Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

APPROXIMATION BY FINITE ELEMIENT FUNGTIONS USING LOGAL REGULARIZATION (*)

par Ph. Clément (${ }^{1}$)

Abstract

Communicated by P G CIARLET Abstract - The aim of this paper is to give an elementary proof of a theorem of approximation of Sobolev spaces $H^{q}(\Omega)$ by finte elements without to use classical interpolation The construction which we give here allows us in some cases to fit boundary conditions

1. INTRODUCTION

The mathematical problem of approximation by finite element functions has been first studied by Goël ([2]) and Zlamal ([3]). In [4], Bramble and Zlamal give estimates for the error in terms of Sobolev norms, however their results are based on the existence and continuity of the interpolate; but the interpolate may not exist; for example if $u \in H^{1}(\Omega)$ where Ω is a two-dimensional domain, by Sobolev's imbedding theorem, the pointwise values of u cannot be defined and consequently no interpolation is possible. In [5] Strang defines an approximation by considering interpolates of regularized functions.

The purpose of this paper is to give an elementary construction of an approximation based on «local» regularization; the results are slightly less restrictive than Strang's ones. As shown by an example, the construction may be modified to fit boundary conditions. Most of the basic tools are known in the literature and their proofs will not be reproduced here; however all details are contained in [1].

[^0]
2. RESULTS

For the sake of concreteness and simplicity, we shall restrict ourselves to the case of triangular finite element subspaces described by the following situation.
Λ is a closed bounded two-dimensional domain with polygonal boundary Γ. One considers a set \mathfrak{D} of decompositions $D=\left\{T_{1}, \ldots, T_{n}\right\}$ of Λ in closed triangles $T_{1}, T_{2}, \ldots, T_{n}$ called «elements» such that : 1) $\Lambda=\bigcup_{j=1}^{n} T_{j}$, 2) two triangles T_{i} and $T_{j} \in D$ are either disjoint, or have a vertex in common or have a side in common, 3) n depends on D. To each $D=\left\{T_{1}, \ldots, T_{n}\right\} \in \mathscr{D}$ is associated a set $\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right\}$ of independent real functions defined on Λ (m depends on D) and to each φ_{i} is associated a point $Q_{i} \in \Lambda$ called « node»; the Q_{i} 's are not necessarily distinct; let S_{1}, \ldots, S_{m} be the supports of $\varphi_{1}, \ldots, \varphi_{m}$. S_{i} is connected to Q_{i} by the relation : $S_{i}=\bigcup_{Q_{i} \in T_{j}} T_{j}$. Furthermore to each φ_{i} is associated a functional $\gamma_{i}: C^{\infty}(\Lambda) \rightarrow \mathbf{R}$ of the form $\sum_{|s|=l_{i}} a_{i s} D^{s} f\left(Q_{i}\right)$; l_{i} is called the « order» of γ_{i}.
$V=\left\{\sum_{i=1}^{m} a_{i} \varphi_{i}: a_{i} \in \mathbf{R}\right\}$ is the finite element space associated to D. For specific examples see [2], [3], [4], [5], [6], [7].

Let $\bar{\Phi} \subset \dot{\Lambda} ; d(\bar{\Phi})$ is the diameter of $\bar{\Phi} ; \mu(\bar{\Phi})$ is the measure of $\bar{\Phi} ; H^{q}(\Phi)$ denotes the Sobolev space of square integrable functions on Φ possessing square integrable derivatives of order $\leqslant q$. For $u, v \in H^{q}(\Phi)$ and $w \in C^{\infty}(\Lambda)$ we define the scalar product and seminorms :

$$
\begin{gathered}
(u, v)_{\Phi}=\int_{\Phi} u v, \quad|u|_{k, \Phi}^{2}=\sum_{|s|=k}\left(D^{s} u, D^{s} u\right)_{\Phi} \quad k \leqslant q \\
|w|_{k, \infty, \Phi}=\max _{|s|=k} \sup _{x \in \Phi}\left|D^{s} w(x)\right| ;
\end{gathered}
$$

for a function $u \in H^{q}\left(T_{j}\right), j=1,2, \ldots, n$ we set $|u|_{k, \Lambda}^{2}=\sum_{j=1}^{n}|u|_{k, T_{j}}^{2}, k \leqslant q$.
In the following c will denote a generic constant independent of $D \in \mathscr{D}$. We introduce the following hypotheses.

H1. For any $p \in \mathscr{T}_{\mathrm{p}}$ (polynomials of degree $\leqslant \rho$), where ρ is independent of $D \in \mathscr{D}$, one has for each $T_{j} \in D$:

$$
p(x)=\sum_{Q_{i} \in T_{j}} \gamma_{i}(p) \varphi_{i}(x) \quad, \quad x \in T_{j}
$$

The functions φ_{i} are the basis functions associated with functionals γ_{i}. H2. If $f \in C^{\infty}(\Lambda)$, for any φ_{i} with $l_{i} \leqslant \rho$ and any $T_{j} \in D$, one has

$$
\left|\gamma_{i}(f) \varphi_{i}\right|_{k, T_{j}} \leqslant c\left(d\left(T_{j}\right)\right)^{l_{i}-k}\left(\mu\left(T_{j}\right)\right)^{\frac{1}{2}}|f|_{l_{i}, \infty, Q_{i}}, k \leqslant \rho+1
$$

H3. For any T_{j} the number of $S_{i} \supset T_{j}$ is bounded by c.
$H 4$. For any $D \in \mathfrak{D}$, all the angles of the $T_{i}^{\prime} s$ are $\geqslant c>0$.
Now we define the linear mapping $\Pi: H^{0}(\Lambda) \rightarrow V$ by the following construction. Let $u \in H^{0}(\Lambda)$; to each S_{i} we associate the polynomial $p_{i} \in \mathscr{T}_{\rho}$ which is the best approximation of u with respect to the norm $|\cdot|_{o, s_{i}}$ i.e. $\left(u-p_{i}, p\right)_{s_{i}}=0$ for all $p \in \mathscr{T}_{\rho}$; we set

$$
\Pi u=\sum_{i=1}^{m} \gamma_{i}\left(p_{i}\right) \varphi_{i} .
$$

Let $h=h(D)=\max _{j=1,2, \cdots, n} d\left(T_{j}\right)$. Under the above situation and hypotheses we shall prove :

Theorem 1

For $u \in H^{q}(\Lambda), q \leqslant \rho+1$, one has

$$
\begin{equation*}
|u-\Pi u|_{k, \Lambda} \leqslant c h^{q-k}|u|_{q, \Lambda} \quad, \quad k=0,1, \ldots, q \tag{1}
\end{equation*}
$$

furthermore if $q \leqslant \rho$ one has also

$$
\begin{equation*}
\lim _{h \rightarrow 0}|u-\Pi u|_{q, \Lambda}=0 \tag{2}
\end{equation*}
$$

As mentionned in the introduction, Π can be modified in order to fit boundary condition; we restrict ourselves to the case where the function u to approximate takes the value 0 on the boundary Γ of Λ i.e. $u \in \stackrel{\circ}{H}^{1}(\Lambda)$. We define $\tilde{\Pi}: H^{0}(\Lambda) \rightarrow V$ by

$$
\tilde{\Pi} u=\sum_{i=1}^{m} \gamma_{i}\left(p_{i}\right) \varphi_{i}
$$

where Σ^{\prime} means that we omit in the sum the terms relative to indices i for which $Q_{i} \in \Gamma$ and $l_{i}=0$. Then under the above hypotheses we shall prove :

Theorem 2

For $u \in \stackrel{\circ}{H}^{1}(\Lambda) \cap H^{q}(\Lambda), q \leqslant \rho+1$ one has

$$
\begin{equation*}
|u-\tilde{\Pi} u|_{k, \Lambda} \leqslant c h^{q-k}|u|_{q, \Lambda} \quad, \quad k=0,1, \ldots, q \tag{3}
\end{equation*}
$$

furthermore if $q \leqslant \rho$ one has also

$$
\begin{equation*}
\lim _{h \rightarrow 0}|u-\tilde{\Pi} u|_{q, \Lambda}=0 \tag{4}
\end{equation*}
$$

n° août 1975, R-2.

Remarks

1. $\tilde{\Pi} u$ will not automatically belong to $\stackrel{\circ}{H}^{1}(\Lambda)$; however if
a) $\varphi_{i} \in H^{1}(\Lambda) i=1,2, \ldots, m$,
b) for all $Q_{i} \in \Gamma$ one has $l_{i}=0$, then specific examples show that $\widetilde{\Pi} u \in \stackrel{\circ}{H}^{1}(\Lambda)$.
2. For one-dimensional finite elements H 4 has to be replaced by : if $T_{i} \cap T_{j} \neq \emptyset$ then $d\left(T_{i}\right) / d\left(T_{j}\right) \geqslant c>0$; here the $T_{i}^{\prime} s$ are segments and $d\left(T_{i}\right)$ is the length of T_{i}.
3. The local character of the definition of Π clearly implies the following property. Let $u \in H^{0}(\Lambda), \Phi \subset \Omega \subset \Lambda$ where Φ is closed and Ω open, $u \in H^{q}(\Omega)$; then for $m \leqslant \rho+1$ one has $|u-\Pi u|_{k, \Phi} \leqslant c h^{q-k}|u|_{q, \Omega}$ and for $q \leqslant \rho$ one has $\lim _{h \rightarrow 0}|u-\Pi u|_{q, \Phi}=0$.
4. There is a great number of alternative possibilities of defining Π in the same spirit.
5. One can without any difficulty give the same results for $\Lambda \subset \mathbf{R}^{n}$.

3. PROOFS

In this section we use all the definitions, notations, hypotheses introduced in section 2 .

Lemma 1

Let S be any of the supports $S_{1}, S_{2}, \ldots, S_{m}, u \in H^{q}(S), q \leqslant \rho+1, t \in \mathcal{S}_{\rho}$ such that $(u-t, p)_{s}=0$ for all $p \in \mathscr{T}_{p}$. Then

$$
|u-t|_{k, S} \leqslant c(d(S))^{q-k}|u|_{q, S} \quad, \quad 0 \leqslant k \leqslant q .
$$

Lemma 1, which supposes H4, has analogue in the literature, see [3], [5], [9]; however, we give below a sketch of the proof.

We restrict ourselves to the case where S is formed by two adjacents triangles ; the other cases are treated similarly. Let us consider first the case where $d(S)=1$. Let Δ_{1}, Δ_{2} be triangles in the (ξ, η) plane with vertices at $(0,0),(0,1),(1,0)$ and $(0,0),(0,-1),(1,0)$ respectively. Let $\Delta=\Delta_{1} \cup \Delta_{2}$. Let in the (x, y) plane S be the domain formed by two triangles T_{1} and T_{2} having a common side. T_{i} is the image of Δ_{i} by the application φ_{i} :

$$
\binom{\xi}{\eta} \mapsto A_{i}\binom{\xi}{\eta}+b_{i}=\binom{x}{y} i=1,2 .
$$

φ is the application of $\Delta \rightarrow S$ such that $\left.\varphi\right|_{\Delta_{i}}=\varphi_{i}$. We consider a set \mathbb{L} of domains S of this type satisfying the relations :
$\left\|A_{i}\right\| \leqslant c$ and $\left\|A_{i}^{-1}\right\| \leqslant c$ where c is a generic constant which doesn't depend on $S \in \mathcal{E}$. Let us show that $(u, 1)_{s}=0$ implies $|u|_{0, S} \leqslant c|u|_{1, S}$ if $u \in H^{1}(S)$.

[^1]Let $v=u \circ \varphi: \Delta \rightarrow R$. We verify that v belongs to $H^{1}(\Delta)$ and if we put

$$
\alpha=\frac{(v, 1)_{\Delta}}{(1,1)_{\Delta}}
$$

we get $|v-\alpha|_{0, \Delta} \leqslant c|v|_{1, \Delta}$. The hypothesis on the matrices A_{i} imply that $|u-\alpha|_{0, T_{i}} \leqslant c|v-\alpha|_{0, \Delta_{i}}$ and $|v|_{1, \Delta_{i}} \leqslant c|u|_{1, T_{i}}$. So

$$
\begin{aligned}
& |u|_{0, s}^{2} \leqslant|u|_{0, s}^{2}+|\alpha|_{0, s}^{2}=|u-\alpha|_{0, s}^{2}=|u-\alpha|_{0, T_{1}}^{2}+|u-\alpha|_{0, T_{2}}^{2} \\
& \quad \leqslant c\left(|v-\alpha|_{0, \Delta_{1}}^{2}+|v-\alpha|_{0, \Delta_{2}}^{2}\right)=c|v-\alpha|_{0, \Delta}^{2} \leqslant|v|_{1, \Delta}^{2} \leqslant c|u|_{1, T}^{2}
\end{aligned}
$$

This allows us to prove the lemma for $k=0$. Indeed, let $u \in H^{q}(S), q \leqslant \rho+1$, $t \in P_{\rho}$ such that $(u-t, p)_{S}=0$ for all $p \in P_{\rho}$. Let \tilde{p} the unique polynomial belonging to P_{ρ} such that $\left(D^{s}(u-\tilde{p}), 1\right)_{s}=0$ for $0 \leqslant|s| \leqslant q-1$; then by applying the preceeding result to $D^{s}(u-\tilde{p})$ for $|s|=q-1, q-2, \ldots, 0$ we get : $|u-\tilde{p}|_{0, s} \leqslant c|u-\tilde{p}|_{q, s}=c|u|_{q, s} ;$ then $|u|_{0, s} \leqslant|u-\tilde{p}|_{0, s}$; hence we are done. We obtain the general case from the interpolation formula $|u|_{k, s} \leqslant c\left(|u|_{0, s}+|u|_{q, s}\right) \forall u \in H^{q}(S)$ and from the fact that $|p|_{k, s} \leqslant c|p|_{0, s}$ $\forall p \in P_{k}$. (These relations can be established by returning to the fundamental domain Δ by the application φ). Indeed, for $\rho=q-1,0 \leqslant k \leqslant q$ we get : $|u-t|_{k, s} \leqslant c\left(|u-t|_{0, s}+|u-t|_{q, s}\right) \leqslant c|u|_{q, s}$. For $q<\rho+1$, let $\tilde{t} \in P_{q-1}$ such that $(u-\tilde{t}, p)_{s}=0 \forall p \in P_{q-1}$; then $|u-t|_{k, s} \leqslant|u-\tilde{t}|_{k, s}+|\tilde{t}-t|_{k, s}$; $|u-t|_{k, s} \leqslant c|u|_{q, s}$ and $|\tilde{t}-t|_{k, s} \leqslant c|\tilde{t}-t|_{0, s} \leqslant c\left(|u-\tilde{t}|_{0, s}+|u-t|_{0, s}\right) \leqslant c|u|_{q, s}$. We obtain the case $d(S) \neq 1$ by a dilatation.

Lemma 2

Let $T \in D, p \in \mathcal{T}_{\rho}$; then

$$
|p|_{k, \infty, T} \leqslant c(\mu(T))^{-\frac{1}{2}}(d(T))^{-k}|p|_{0, T} \quad, \quad k=0,1,2, \ldots
$$

Lemma 2, which supposes $H 4$, is an elementary property based on the equivalence of all the norms for a finite dimensional space (see [8]).

Lemma 3

a) If $T_{j} \subset S_{i}$ then $d\left(S_{i}\right) \leqslant c d\left(T_{j}\right)$.
b) The number of elements T_{j} contained in any support S_{i} is $\leqslant c$.

Lemma 3 is a consequence of H 3 and H 4 .

Proof of theorem 1

Let T be a particular element of $D, Q_{1}, Q_{2}, \ldots, Q_{\alpha}$ the nodes belonging to $T, \varphi_{1}, \ldots, \varphi_{\alpha}, \gamma_{1}, \ldots, \gamma_{\alpha}, l_{1}, l_{2}, \ldots, l_{\alpha}, p_{1}, \ldots, p_{\alpha}$ the corresponding basic functions, functionals, orders and polynomials. Let $u \in H^{q}(\Lambda), q \leqslant \rho+1$. One has on T :

$$
\Pi u=\sum_{i=1}^{\alpha} \gamma_{i}\left(p_{i}\right) \varphi_{i}=\sum_{i=1}^{\alpha} \gamma_{i}\left(p_{1}\right) \varphi_{i}+\sum_{i=2}^{\alpha} \gamma_{i}\left(p_{i}-p_{1}\right) \varphi_{i}
$$

n° août 1975, R-2.
because of H 1 , the first sum on the right side is equal to p_{1}; by lemmas 1 and 3 , one gets for $0 \leqslant k \leqslant q$:

$$
\begin{equation*}
|\Pi u-u|_{k, T} \leqslant c h^{q-k}|u|_{q, s_{1}}+\sum_{i=2}^{\alpha}\left|\gamma_{i}\left(p_{i}-p_{1}\right)\right|\left|\varphi_{i}\right|_{k, T} \tag{5}
\end{equation*}
$$

in order to estimate the second term of the right side, one remarks that one has by lemmas 1 and 3 :

$$
\begin{aligned}
\left|p_{i}-p_{1}\right|_{0, T} & \leqslant\left|u-p_{i}\right|_{0, T}+\left|u-p_{1}\right|_{0, T} \leqslant\left|u-p_{i}\right|_{0, s_{i}}+\left|u-p_{1}\right|_{0, s_{1}} \\
& \leqslant c\left(d\left(S_{i}\right)\right)^{q}|u|_{q, s_{i}}+c\left(d\left(S_{1}\right)\right)^{q}|u|_{q, s_{1}} \\
& \leqslant c(d(T))^{q}\left(|u|_{q, s_{i}}+|u|_{q, S_{1}}\right)
\end{aligned}
$$

by lemma 2 and H 2 , one gets :

$$
\begin{gathered}
\left|p_{i}-p_{1}\right|_{i_{i}, \infty, T} \leqslant c(\mu(T))^{-\frac{1}{2}}(d(T))^{q-l_{i}}\left(|u|_{q, S_{i}}+|u|_{q, S_{1}}\right), \\
\left|\gamma_{i}\left(p_{i}-p_{1}\right)\right|\left|\varphi_{i}\right|_{k, T} \leqslant c h^{q-k}\left(|u|_{q, s_{i}}+|u|_{q, S_{1}}\right)
\end{gathered}
$$

introducing this last inequality in (5) one gets by H3 $(\alpha \leqslant c)$:

$$
|\Pi u-u|_{k, T}^{2} \leqslant \operatorname{ch}^{2(q-k)} \sum_{i=1}^{\infty}|u|_{q, S_{i}}^{2}
$$

this relation is valid for any $T_{i} \in D$; using again H3 and lemma 3 , one gets by summing for $i=1,2, \ldots, n$ precisely relation (1). Now suppose $q \leqslant \rho$; for any $v \in H^{q+1}(\Lambda)$ one has by (1):

$$
\begin{aligned}
|u-\Pi u|_{q, \Lambda} & \leqslant|v-\Pi v|_{q, \Lambda}+|(u-v)-\Pi(u-v)|_{q, \Lambda} \\
& \leqslant c h|v|_{q+1, \Lambda}+c|u-v|_{q, \Lambda} ;
\end{aligned}
$$

let $\varepsilon>0$; one first chooses v such that $c|u-v|_{q, \Lambda}<\varepsilon / 2$; let $h_{0}>0$ be such that $c h_{0}|v|_{q+1, \Lambda}<\varepsilon / 2$; then for $h<h_{0},|u-\Pi u|_{q, \Lambda}<\varepsilon$ which proves relation (2).

Lemma 4

Let $T \in D, \tau$ a side of $T, u \in H_{1}(T)$; then

$$
d(T)|u|_{0, \tau}^{2} \leqslant c\left\{|u|_{0, T}^{2}+(d(T))^{2}|u|_{1, T}^{2}\right\} .
$$

Lemma 4 is a consequence of the trace theorem (see [10]); for a detailed proof, see [1].

Proof of theorem 2

Let $u \in \stackrel{\circ}{H}^{1}(\Lambda) \cap H^{q}(\Lambda), 1 \leqslant q \leqslant \rho+1$. Using the notations and arguments of the proof of theorem 1, one remarks (see [6]) that for proving (3) it suffices to show that for $T \in D$ one has

$$
\begin{equation*}
|\Pi u-\tilde{\Pi} u|_{k, T}^{2} \leqslant c h^{2(q-k)} \sum_{i=1}^{\alpha}|u|_{q, S_{i}}^{2} \quad, \quad 0 \leqslant k \leqslant q \tag{7}
\end{equation*}
$$

Let $Q_{t} \in \Gamma$ and $l_{t}=0$ for $l=1,2, \ldots, \beta$ and for $\beta<i \leqslant \alpha, Q_{\imath} \notin \Gamma$ or $l_{t}>0$; if $\beta=0, \Pi u=\tilde{\Pi} u$ on T so that we can suppose $\beta>0$; by H2, one has

$$
|\Pi u-\tilde{\Pi} u|_{k, T}=\left|\sum_{i=1}^{\beta} \gamma_{i}\left(p_{\imath}\right) \varphi_{\imath}\right|_{k, T} \leqslant c(d(T))^{-k}(\mu(T))^{\frac{1}{2}} \sum_{i=1}^{\beta}\left|p_{\imath}\left(Q_{\imath}\right)\right|
$$

let $\tau_{i} \subset \Gamma$ be a side of an element G_{i} satisfying the relation $Q_{i} \in \tau_{i} \subset G_{i} \subset S_{i}$, $i=1, \ldots, \beta$. Since $u \in \stackrel{\circ}{H}^{1}(\Lambda),|u|_{0, \tau_{i}}=0$ and $\left|p_{\imath}\right|_{0, \tau_{i}}=\left|u-p_{\imath}\right|_{0, \tau_{i}}$; from lemmas 4 and 1 , one gets :

$$
\begin{align*}
d\left(G_{i}\right)\left|p_{i}\right|_{0, \tau_{i}}^{2} & \leqslant c\left\{\left|u-p_{\imath}\right|_{0, s_{i}}^{2}+\left(d\left(S_{t}\right)\right)^{2}\left|u-p_{\imath}\right|_{1, s_{i}}^{2}\right\} \\
& \leqslant c\left(d\left(S_{i}\right)\right)^{2 q}|u|_{q, s_{i}}^{2} \tag{9}
\end{align*}
$$

a one-dimensional version of lemma 2 allows to write

$$
\begin{equation*}
\left|p_{\imath}\left(Q_{\imath}\right)\right| \leqslant c\left(L\left(\tau_{\imath}\right)\right)^{-\frac{1}{2}}\left|p_{\imath}\right|_{0, \tau_{\imath}} \tag{10}
\end{equation*}
$$

where $L(\tau)$ is the length of τ; by H 4 and lemma 3, (9) and (10) imply :

$$
\begin{aligned}
(d(T))^{-2 k} \mu(T)\left(p_{i}\left(Q_{i}\right)\right)^{2} & \leqslant c(d(T))^{-2 k} \mu(T)\left(L\left(\tau_{i}\right)\right)^{-1}\left(d\left(G_{i}\right)\right)^{-1}\left(d\left(S_{i}\right)\right)^{2 q}|u|_{q, s_{i}}^{2} \\
& \leqslant \operatorname{ch}^{2(q-k)}|u|_{q, S_{i}}^{2}
\end{aligned}
$$

replacing in (8) and using H3 one obtains (7). It remains to prove (4); let $u \in \stackrel{\circ}{H}^{1}(\Lambda) \cap H^{q}(\Lambda), q \leqslant \rho$; by theorem 1 , it suffices to verify that $\lim _{h \rightarrow 0}|\Pi u-\tilde{\Pi} u|_{q, \Lambda}=0$; let $J=\left\{j: T_{j} \cap \Gamma \neq \emptyset\right\}$ and θ be the union of all S_{t} containing a T_{j} with $j \in J$; by (7) H3, and lemma 3 , one has

$$
\begin{gathered}
|\Pi u-\tilde{\Pi} u|_{q, \Lambda}^{2}=\sum_{j \in J}|\Pi u-\tilde{\Pi} u|_{q, T_{J}} \leqslant c|u|_{q, \theta}^{2} \\
\text { since } \lim _{h \rightarrow 0} \mu(\theta)=0, \text { one also has } \lim _{h \rightarrow 0}|\Pi u-\tilde{\Pi} u|_{q, \Lambda}=0
\end{gathered}
$$

REFERENCES

[1] Ph. Clement, Un problème d'approximation par éléments finis, Annexe à la thèse de Doctorat, Ecole Polytechnıque Fédérale de Lausanne, 1973.
[2] J. J Goel, Construction of Basic Functions for Numerical Uttlisation of Ritz-s Method, Numer. Math., (1968), 12, 435-447.
[3] M. Zlamal, On the Finte Element Method, Numer. Math., (1968), 12, 394-409.
[4] J. H. Bramble and M. Zlamal, Triangular Elements in the Finite Element Method, Math. of Comp. vol. 24, number 12, (1970), 809-820.
[5] G. Strang, Approximation in the finite element method, Numer Math., (1972), 19, 81-98.
[6] G Dupuls et J. J. Goel, Eléments fints raffinés en élastıcité bidimensionnelle, ZAMP, vol. 20, (1969), 858-881.
[7] J. Descloux, Méthodes des éléments finis, Dept. de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1973.
[8] J. Descloux, Two Basic Properties of Finite Elements, Dept. of Math., Ecole Polytechnique Fédérale de Lausanne, 1973.
[9] P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolation in R^{n} with applications to finite elements methods, Arch. Rational Mech. Anal., 46 (1972), 177-199.
[10] G. Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics 8, Springer, 1965.
[11] S. Hilbert, A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations, Math. of Comp., 27 (1973), 81-89.

[^0]: $\left(^{*}\right)$ This paper is drawn from a thesis presented at the Federal Institute of Technology Lausanne The author wants to express his gratitude to Prof J Descloux for his suggestions and helpful assistance
 (1) Ecole polytechnıque fedérale de Lausanne, Departement de Mathematıques

[^1]: Revue Française d'Automatique, Informatique et Recherche Opérationnelle

