@article{M2AN_1975__9_2_5_0, author = {Falk, Richard S.}, title = {Approximation of an elliptic boundary value problem with unilateral constraints}, journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Analyse num\'erique}, pages = {5--12}, publisher = {Dunod}, address = {Paris}, volume = {9}, number = {R2}, year = {1975}, mrnumber = {390477}, zbl = {0316.65024}, language = {en}, url = {http://www.numdam.org/item/M2AN_1975__9_2_5_0/} }
TY - JOUR AU - Falk, Richard S. TI - Approximation of an elliptic boundary value problem with unilateral constraints JO - Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique PY - 1975 SP - 5 EP - 12 VL - 9 IS - R2 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_1975__9_2_5_0/ LA - en ID - M2AN_1975__9_2_5_0 ER -
%0 Journal Article %A Falk, Richard S. %T Approximation of an elliptic boundary value problem with unilateral constraints %J Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique %D 1975 %P 5-12 %V 9 %N R2 %I Dunod %C Paris %U http://www.numdam.org/item/M2AN_1975__9_2_5_0/ %G en %F M2AN_1975__9_2_5_0
Falk, Richard S. Approximation of an elliptic boundary value problem with unilateral constraints. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, Tome 9 (1975) no. R2, pp. 5-12. http://www.numdam.org/item/M2AN_1975__9_2_5_0/
[1] Sur La Régularité de La Solution d'Inéquations Elliptiques, Bulletin Soc. Math. France, vol. 96, 1968, pp. 153-180. | Numdam | MR | Zbl
and ,[2] Error Estimates for the Approximation of a Class of Variational Inequalities, Math. of Computation, vol. 28, 1974, pp. 963-971. | MR | Zbl
,[3] On the Regularity of the Solution of a Variational Inequality, Communications on Pure and Applied Mathematics, vol. 22, 1969, pp. 153-188. | MR | Zbl
and ,[4] Variational Inequalities, Communications on Pure and Applied Mathematics, vol. 20, 1967, pp. 493-519. | MR | Zbl
and ,[5] One-Sided Approximation and Variational Inequalities Bulletin Amer. math. Soc, vol.80, 1974, pp. 308-312. | MR | Zbl
and ,[6] Lineare Spline-Funktionen und die Methoden vonRitz fur elliptische Randwertproblem, Archive for Rational Mechanics and Analysis, vol. 36, 1970, pp. 348-355. | MR | Zbl
,[7] Uber ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilraümen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1970/71), pp.9-15. | MR | Zbl
,