@article{M2AN_1974__8_2_5_0, author = {Bramble, J. H. and Thom\'ee, V.}, title = {Interior maximum norm estimates for some simple finite element methods}, journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Analyse num\'erique}, pages = {5--18}, publisher = {Dunod}, address = {Paris}, volume = {8}, number = {R2}, year = {1974}, mrnumber = {359354}, zbl = {0301.65065}, language = {en}, url = {http://www.numdam.org/item/M2AN_1974__8_2_5_0/} }
TY - JOUR AU - Bramble, J. H. AU - Thomée, V. TI - Interior maximum norm estimates for some simple finite element methods JO - Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique PY - 1974 SP - 5 EP - 18 VL - 8 IS - R2 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_1974__8_2_5_0/ LA - en ID - M2AN_1974__8_2_5_0 ER -
%0 Journal Article %A Bramble, J. H. %A Thomée, V. %T Interior maximum norm estimates for some simple finite element methods %J Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique %D 1974 %P 5-18 %V 8 %N R2 %I Dunod %C Paris %U http://www.numdam.org/item/M2AN_1974__8_2_5_0/ %G en %F M2AN_1974__8_2_5_0
Bramble, J. H.; Thomée, V. Interior maximum norm estimates for some simple finite element methods. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, Tome 8 (1974) no. R2, pp. 5-18. http://www.numdam.org/item/M2AN_1974__8_2_5_0/
[1] On the convergence of difference approximations for second order uniformly elliptic operators. Numerical Solution of Field Problems in Continuum Physics. SIAM-AMS Proceedings, Vol. 2, Providence R.I. 1970, 201-209. | MR | Zbl
,[2] Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal., 36 (1970), 348-355. | MR | Zbl
,[3] Investigation of the convergence rate of variational-difference schemes for elliptic second order equations in a two-dimensional domain with a smooth boundary. -. Vy_isl. Mat. i Mat. Fir. 9 (1969),1102-1120 (Russian). (Translation : U.S.S.R. Comput. Math, and Math. Phys.). | MR | Zbl
and ,[4] Discrete interior Schauder estimates for elliptic difference operators. SIAM J. Numer. Anal., 5 (1968), 626-645. | MR | Zbl
,[5] Approximate solution of Dirichlet's problem using approximating polygonal domains. Topics in Numerical Analysis. Edited by J. J. H. Miller. Academic Press 1973, 311-328. | MR | Zbl
,[6] Elliptic difference equations and interior regularity, Numer. Math. II (1968), 196-210. | MR | Zbl
and ,