A general theorem on triangular finite C (m) -elements
Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, Tome 8 (1974) no. R2, pp. 119-127.
@article{M2AN_1974__8_2_119_0,
     author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
     title = {A general theorem on triangular finite $C^{(m)}$-elements},
     journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Analyse num\'erique},
     pages = {119--127},
     publisher = {Dunod},
     address = {Paris},
     volume = {8},
     number = {R2},
     year = {1974},
     mrnumber = {388731},
     zbl = {0321.41003},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1974__8_2_119_0/}
}
TY  - JOUR
AU  - Ženíšek, Alexander
TI  - A general theorem on triangular finite $C^{(m)}$-elements
JO  - Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique
PY  - 1974
SP  - 119
EP  - 127
VL  - 8
IS  - R2
PB  - Dunod
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1974__8_2_119_0/
LA  - en
ID  - M2AN_1974__8_2_119_0
ER  - 
%0 Journal Article
%A Ženíšek, Alexander
%T A general theorem on triangular finite $C^{(m)}$-elements
%J Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique
%D 1974
%P 119-127
%V 8
%N R2
%I Dunod
%C Paris
%U http://www.numdam.org/item/M2AN_1974__8_2_119_0/
%G en
%F M2AN_1974__8_2_119_0
Ženíšek, Alexander. A general theorem on triangular finite $C^{(m)}$-elements. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, Tome 8 (1974) no. R2, pp. 119-127. http://www.numdam.org/item/M2AN_1974__8_2_119_0/

[1] Bell K., A refined triangular plate bending finite element Int. J. Num. Meth. Engng., 1969, 1, 101-122.

[2] Bramble J. H. and Zlámalm., Triangular elements in the finite element method. Math. Comp., 1970, 24, 809-820. | MR | Zbl

[3] Koukals S., Piecewise polynomial interpolations in the finite element method. Apl.Mat., 1973, 18, 146-160. | MR | Zbl

[4] Strang G. and Fix G., An analysis of the finite element method. Prentice-Hall Inc., Englewood Cliffs, N. J., 1973. | MR | Zbl

[5] Žen≫Ĺšek A., Interpolation polynomials on the triangle. Numer. Math., 1970, 15, 283-296. | MR | Zbl

[6] Žen≫Ĺšek A., Polynomial approximation on tetrahedrons in the finite element method.J. Approx. Theory, 1973, 7, 334-351. | MR | Zbl